Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T03:05:13.810Z Has data issue: false hasContentIssue false

Fragility of Metallic Glass Forming Liquids

Published online by Cambridge University Press:  11 February 2011

G. J. Fan
Affiliation:
Chemical Engineering and Materials Sicence, University ofCalifornia, Davis, CA 95616, USA
R. K. Wunderlich
Affiliation:
Ulm University, Materials Division, D-89081 Ulm, Germany
H.-J. Fecht
Affiliation:
Ulm University, Materials Division, D-89081 Ulm, Germany Research Center Karlsruhe, Institute of Nanotechnology, 76021 Karlsruhe, Germany
Get access

Abstract

Based on the available kinetic and thermodynamic data, we compare the kinetic fragility and thermodynamic fragility of different metallic glass forming liquids. The results indicate a correlation between the kinetic and thermodynamic fragility in metallic glass forming liquids, consistent with the energy landscape model which predicts a connection between the kinetic and thermodynamic properties of supercooled liquids. The metal - metalloid glass forming alloys such as PdNiCuP are found to exhibit a distinctively different correlation as compared to early – late transition metal – type metallic glass forming alloys such as ZrTiCuNiBe. For the same thermodynamic fragility the former exhibit a much larger kinetic fragility indicating that the two classes of alloys have a different liquid structure. In addition, the relationship between the kinetic fragility and the Gibbs free energy difference between the undercooled liquid and the crystalline phases has been discussed in both metal metalloid glass forming alloys and early - late transition metal – type metallic glass forming alloys.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ito, K., Moynihan, C. T., and Angell, C. A., Nature 398, 492 (1999).Google Scholar
2. Fan, G. J. and Fecht, H.–J., J. Chem. Phys. 116, 5002 (2003).Google Scholar
3. Adam, G. and Gibbs, J. H., J. Chem. Phys. 43, 139 (1965).Google Scholar
4. Martinez, L.–M. and Angell, C. A., Nature 410, 663 (2001).Google Scholar
5. Roland, C. M., Santangelo, P. G., and Ngai, K. L., J. Chem. Phys. 111, 5593 (1999).Google Scholar
6. Ngai, K. L. and Yamamuro, O., J. Chem. Phys. 111, 10403 (1999).Google Scholar
7. Huang, D. and Mc Kenna, G. B., J. Chem. Phys. 114, 5621 (2001).Google Scholar
8. Inoue, A., Acta mater. 48, 279 (2000).Google Scholar
9. Peker, A., and Johnson, W.L., Appl. Phys. Lett. 63, 2342 (1993).Google Scholar
10. Angell, C. A., J. Non-Cryst. Solids 131–133, 13 (1991).Google Scholar
11. Böhmer, R., Ngai, K. L., Angell, C. A., and Plazek, D. J., J. Chem. Phys. 99, 4201 (1993).Google Scholar
12. Vogel, W., Phys. Z 22, 645 (1921).Google Scholar
13. Tammann, G. and Hesse, G., Z. Anorg. Allg. Chem. 156, 245 (1926).Google Scholar
14. Fulcher, G. S., J. Am. Ceram. Soc. 8, 339 (1925).Google Scholar
15. Cohen, M. H., and Grest, G. S., Phys. Rev. B20, 1077 (1979).Google Scholar
16. Busch, R., Bakke, E., and Johnson, W. L., Acta Mater. 46, 4725 (1998).Google Scholar
17. Busch, R., Liu, W., and Johnson, W. L., J. Appl. Phys. 83, 4134 (1998).Google Scholar
18. Masuhr, A., A Waniuk, T., Busch, R., and Johnson, W. L., Phys. Rev. Lett. 82, 2290 (1999).Google Scholar
19. Wilde, G., Görler, G.P., Willnecker, R., and Fecht, H.-J., J. Appl. Phys. 87, 1141 (2000).Google Scholar
20. Nishiyama, N. and Inoue, A., Mater. Trans. JIM 40, 64 (1999).Google Scholar
21. Fan, G. J., Lu, I. R., and Fecht, H. –J., to be published.Google Scholar
22. Glade, S.C. and Johnson, W. L., J. Appl. Phys. 87, 7249 (2000).Google Scholar
23. Chen, H. S. and Turnbull, D., J. Chem. Phys. 48, 2560 (1968).Google Scholar
24. Klose, G. and Fecht, H. J., Mater. Sci. Eng. A179/A180, 77 (1994).Google Scholar
25. Fan, G. J., Wunderlich, R. K., and Fecht, H. –J., to be published.Google Scholar
26. Mizutani, U. Phys. Stat. Sol. B176, 9 (1993).Google Scholar
27. Lu, I. R., Willnecker, R., Görler, G. P., and Fecht, H. –J. J. Non. Cryst. Mat. in print.Google Scholar
28. Damaschke, B. and Samwer, K., Appl. Phys. Lett. 75, 2200 (1999)Google Scholar
29. Yavari, A. R. and Inoue, A., Bulk Metallic Glasses, edited by Johnson, W. L., Inoue, A. and Liu, C. T., (MRS Symposium Proceedings, 554, 1999) pp. 2129.Google Scholar
30. Johnson, W. L., Mater. Res. Bull. 24, 42 (1999).Google Scholar
31. Turnbull, D., Contemp. Phys. 10, 473 (1969).Google Scholar