Published online by Cambridge University Press: 11 February 2011
The effects of changes in notch radius on the toughness of two different Zr-based bulk metallic glasses have been determined. It is shown that increases in notch radius produce large increases to the toughness, accompanied by extensive shear banding and crack bifurcation. The fracture toughness of twenty (20) fatigue precracked specimens exhibiting planar crack growth were in the range 20.3 ± 6.7 MPa√m for the two Zr-based glasses. Increasing the notch radius to 110 μm produced notch toughness in the range 95.3 ± 8.3 MPa√m for nine (9) tests on Vitreloy I, well in excess of that typically observed in most structural materials. Toughness tests conducted on two fatigue precracked specimens of Vitreloy I at 77 K produced values for fracture toughness that were in the range 17.9 ± 2.7 MPa√m, similar to that obtained at 298 K. The fatigue precracked fracture toughness of metallic glass composites containing large crystalline regions of a body centered cubic Zr-Ti-Nb alloy were in the range 29–42 MPa√m, but the values were temperature dependent over the range 148 K to 500 K. Fracture surfaces were analyzed via Scanning Electron Microscopy (SEM).