Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T15:54:27.504Z Has data issue: false hasContentIssue false

Formation And Characterization Of Sulfide Clusters In Molecular Sieve Zeolite Materials

Published online by Cambridge University Press:  15 February 2011

Markus Winterer
Affiliation:
Materials Science Division, 9700 S. Cass Avenue, Argonne National Laboratory, Argonne, IL 60439
Lennox E. Iton
Affiliation:
Materials Science Division, 9700 S. Cass Avenue, Argonne National Laboratory, Argonne, IL 60439
Stanley A. Johnson
Affiliation:
Chemical Technology Division, 9700 S. Cass Avenue, Argonne National Laboratory, Argonne, IL 60439
Victor A. Maroni
Affiliation:
Materials Science Division, 9700 S. Cass Avenue, Argonne National Laboratory, Argonne, IL 60439 Chemical Technology Division, 9700 S. Cass Avenue, Argonne National Laboratory, Argonne, IL 60439
Get access

Abstract

The incorporation of molybdenum into the faujasite pore system via reaction of MoCl5 with H-Y zeolite results in dealumination of the zeolite framework and formation of MoO3 species. These species are readily sulfided by H2S, but MoS2 clusters are not produced. A sulfur-bridged dimeric molybdenum cluster, of proposed composition HO-Mo-(S)3-Mo-OH, is formed, which can strongly chemisorb CO. Sulfidation of niobium in this manner is not readily accomplished.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ozin, G. A., Kupfermann, A., and Stein, A., Angew. Chem. Int. Ed. (Engl.) 28.359 (1989).Google Scholar
2. Brus, L., J. Phys. Chem. 90, 2555 (1986).Google Scholar
3. Stucky, G. D. and MacDougall, J. E., Science 247. 669 (1990).Google Scholar
5. Jaegermann, W. and Tributsch, H., Prog. in Surf. Sci. 22, 1 (1988).Google Scholar
6. Roxlo, C. B., Daage, M., Ruppert, A. F., and Chianelli, R. R., J. Catal. 100, 176 (1986).CrossRefGoogle Scholar
7. Laniecki, M. and Zmierczak, W., Zeolites 11, 18 (1991).CrossRefGoogle Scholar
8. Dai, P. E. and Lunsford, J. H., J. Catal. 64, 173 (1980).Google Scholar
9. Johns, J. R. and Howe, R. F., Zeolites 5, 251 (1985).Google Scholar
10. Garner, C. D., Hill, L. H., Mabbs, F. E., McFaden, D. L., and McPhail, A. T., J.C.S. Dalton Trans. 1977, 853.Google Scholar
11. Fricke, R., Hanke, W., and Öhlmann, G., J. Catal. 79, 1 (1983).Google Scholar
12. Marov, I. N., Belyaeva, V. K., Zakharova, I. A., Grachev, M. K., Kuznetsova, A. A., and Buslaev, Y.A., Russ. J. Inorg. Chem. 12, 224 (1974).Google Scholar
13. Boorman, P. M., Garner, C. D., Mabbs, F. E., J. Chem. Soc. Dalton Trans. 1975, 1299.Google Scholar
14. Silbernagel, B. G., Pecoraro, T. A., and Chianelli, R. R., J. Catal. 78, 380 (1982).CrossRefGoogle Scholar
15. Atkins, P. W. and Symons, M. C. R., ”The Structure of Inorganic Radicals”, Elsevier, Amsterdam, 1967, p. 214; L. Busetto, A. Vaccari, and G. Martini, J. Phys. Chem. 85, 1927 (1981).Google Scholar
16. Stiles, D. A., Tyerman, W. J. R., Strausz, O. P., and Gunning, H. E., Can. J. Chem. 44, 2149 (1966).CrossRefGoogle Scholar
17. Seshadri, K. S., Massoth, F. E. and Petrakis, L., J. Catal. 19, 95 (1970).Google Scholar
18. Spivack, B. and Dori, Z., J.C.S. Dalton Trans. 1975, 1077.CrossRefGoogle Scholar
19. Pfeiffer, H., Coll. Surf. 36, 169 (1989).Google Scholar