Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T03:05:38.875Z Has data issue: false hasContentIssue false

First-principles calculation of the effect of strain on the diffusion of Ge adatoms on Si and Ge (001) surfaces

Published online by Cambridge University Press:  11 February 2011

A. van de Walle
Affiliation:
Materials Science & Engineering Department, Northwestern University, Evanston, IL 60208–3108, 2/10/2003
M. Asta
Affiliation:
Materials Science & Engineering Department, Northwestern University, Evanston, IL 60208–3108, 2/10/2003
P. W. Voorhees
Affiliation:
Materials Science & Engineering Department, Northwestern University, Evanston, IL 60208–3108, 2/10/2003
Get access

Abstract

First-principles calculations are used to calculate the strain dependencies of the binding and diffusion-activation energies for Ge adatoms on both Si(001) and Ge(001) c(4×2) reconstructed surfaces. Our calculations reveal that over the range of strains typically sampled during quantum dot self-assembly (0 to 1% compressive strain) the binding and activation energies on a strained Ge(001) surface increase and decrease, respectively, by 0.21 eV and 0.12 eV. For a growth temperature of 600 °C, these strain-dependencies give rise to a 16-fold increase in adatom density and a 5-fold decrease in adatom diffusivity in the region of compressive strain surrounding a Ge island with a characteristic size of 10 nm lying on top of a Si substrate covered by a Ge wetting layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Dalpian, G. M., Fazzio, A., and daSilva, A. J. R.. Phys. Rev. B, 63: 205303, 2001.Google Scholar
[2] Daruka, I. and Barabási, A.-L.. Phys. Rev. Lett., 79: 3708, 1997.Google Scholar
[3] Eaglesham, D. J. and Cerullo, M.. Phys. Rev. Lett., 64: 19431946, 1990.Google Scholar
[4] Floro, J. A., Chason, E., Twesten, R. D., Hwang, R. Q., and Freund, L. B.. Phys. Rev. Lett., 79: 3946, 1997.Google Scholar
[5] Jonsson, H. Mills, G. and Schenter, G. K.. Surf. Sci., 324: 305, 1995.Google Scholar
[6] Mills, G. Jonsson, H. and Jacobsen, K. W.. Nudged elastic band method for finding minimum energy paths of transitions. Berne, In B. J., Ciccotti, G., and Coker, D. F., editors, Classical and Quantum Dynamics in Condensed Phase Simulations. World Scientific, 1998.Google Scholar
[7] Kaxiras, E.. Comput. Mat. Sci., 6: 158172, 1996.Google Scholar
[8] Kobayashi, N. P., Ramachandran, T. R., Chen, P., and Madhukar, A.. Appl. Phys. Lett., 68: 3299, 1996.Google Scholar
[9] Koduvely, H. M. and Zangwill, A.. Phys. Rev. B, 60: R2204, 1999.Google Scholar
[10] Kratzer, P., Penev, E., and Scheffler, M.. Appl. Phys. A, 75: 79, 2002.Google Scholar
[11] Kresse, G. and Furthmüller, J.. Comput. Mat. Sci., 6: 15, 1996.Google Scholar
[12] Kresse, G. and Furthmüller, J.. Phys. Rev. B, 54: 11169, 1996.Google Scholar
[13] Liu, F., Wu, F., and Lagally, M. G.. Chem. Rev., 97: 1045, 1997.Google Scholar
[14] Madhukar, A.. J. Cryst. Growth, 163: 149, 1996.Google Scholar
[15] Mea, K.. Thin Solid Films, 395: 235, 2001.Google Scholar
[16] Medeiros-Ribeiro, G., Bratkovski, A. M., Kamins, T. I., Ohlberg, D. A. A., and Williams, R. S.. Science, 279: 353355, 1998.Google Scholar
[17] Milman, V.. Int. J. of Quan. Chem., 61: 719724, 1997.Google Scholar
[18] Milman, V., Jesson, D. E., Pennycook, S. J., Payne, M. C., Lee, M. H., and Stich, I.. Phys. Rev. B, 50: 26632666, 1994.Google Scholar
[19] Milman, V., Pennycook, S. J., and Jesson, D. E.. Thin Solid Films, 272: 375385, 1996.Google Scholar
[20] Mo, Y. W. and Lagally, M. G.. Surf. Sci., 248: 313320, 1991.Google Scholar
[21] Mo, Y.-W., Savage, D. E., Swartzentruber, B. S., and Lagally, M. G.. Phys. Rev. Lett., 65: 10201023, 1990.Google Scholar
[22] Moll, N., Scheffler, M., and Pehlke, E.. Phys. Rev. B, 58: 4566, 1998.Google Scholar
[23] Penev, E., Kratzer, P., and Scheffler, M.. Phys. Rev. B, 64: 085401, 2001.Google Scholar
[24] Phillips, J. C. and Kleinman, L.. Phys. Rev., 116: 287, 1959.Google Scholar
[25] Ratsch, C., Seitsonen, A. P.,, and Scheffler, M.. Phys. Rev. B, 55: 67506753, 1997.Google Scholar
[26] Roland, C. and Gilmer, G. H.. Phys. Rev. B, 46: 1342813436, 1992.Google Scholar
[27] Ross, F. M., Tersoff, J., and Tromp, R. M.. Phys. Rev. Lett., 80: 984987, 1998.Google Scholar
[28] Ross, F. M., Tromp, R. M., and Reuter, M. C.. Science, 286: 19311934, 1999.Google Scholar
[29] Schroeder, M. and Wolf, D. E.. Surf. Sci., 375: 129140, 1997.Google Scholar
[30] Shchukin, V. A. and Bimbert, D.. Rev. Mod. Phys., 71: 11251171, 1999.Google Scholar
[31] Shu, D. J., Liu, F., and Gong, X. G.. Phys. Rev. B, 64: 245410, 2001.Google Scholar
[32] Smith, A. P., Wiggs, J. K., Jonsson, H., Yan, H., Corrales, L. R., Nachtigall, P., and Jordan, K. D.. Journal Of Chemical Physics, 102: 10441056, 1995.Google Scholar
[33] Spencer, B. J., Voorhees, P. W., and Davis, S. H.. J. Appl. Phys., 73: 4955, 1993.Google Scholar
[34] Spjut, H. and Faux, D. A.. Surf. Sci., 306: 233, 1994.Google Scholar
[35] Tersoff, J., Teichert, C., and Lagally, M. G.. Phys. Rev. Lett., 761: 1675, 1996.Google Scholar
[36] Tersoff, J. and Tromp, R. M.. Phys. Rev. Lett., 70: 2782, 1993.Google Scholar
[37] Vanderbilt, D.. Phys. Rev. B, 41: 7892, 1990.Google Scholar
[38] Williams, R. S., Medeiros-Ribeiro, G., Kamins, T. I., and Ohlberg, D. A. A.. Annu. Rev. Phys. Chem., 51: 527, 2000. and references therein.Google Scholar
[39] Zoethout, E., Gürlü, O., Zandlivet, H. J. W., and Poelsema, B.. Surf. Sci., 452: 247252, 2000.Google Scholar