Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-27T23:44:40.064Z Has data issue: false hasContentIssue false

Field Induced Crystal Nucleation in Chalcogenide Phase Change Memory

Published online by Cambridge University Press:  31 January 2011

Marco Nardone
Affiliation:
[email protected], University of Toledo, Physics & Astronomy, Toledo, Ohio, United States
Victor G. Karpov
Affiliation:
[email protected], University of Toledo, Physics & Astronomy, Toledo, Ohio, United States
Mukut Mitra
Affiliation:
[email protected], University of Pennsylvania, Materials Science and Engineering, Philadelphia, Pennsylvania, United States
Ilya V. Karpov
Affiliation:
[email protected], Intel, Santa Clara, California, United States
Get access

Abstract

A summary is presented of our theoretical and experimental work over more than two years related to switching in chalcogenide glass phase change memory. As a significant addition to the well known experiments, we have studied switching under considerably lower voltages and elevated temperatures, as well as the statistics of switching events and relaxation oscillations. Our analytical theory, based on field induced crystal nucleation, predicts all of our observed features and their dependencies on material parameters.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ovshinsky, S. R., Phys. Rev. Lett. 21 (20), 1450 (1968).Google Scholar
2 Adler, D., Henisch, H. K., and Mott, N., Rev. Mod. Phys. 50 (2), 209 (1978).Google Scholar
3 Karpov, V. G., Kryukov, Y. A., Savransky, S. D., and Karpov, I. V., Appl. Phys. Lett. 90 (12), 123504 (2007).Google Scholar
4 Karpov, V. G., Kryukov, Y. A., Karpov, I. V., and Mitra, M., Phys. Rev. B. 78 (5), 052201 (2008).Google Scholar
5 Karpov, V. G., Kryukov, Y. A., Mitra, M., and IKarpov, . V., J. Appl. Phys. 104 (5), 054507 (2008).Google Scholar
6 Karpov, I. V., Mitra, M., Kau, D., Spadini, G., Kryukov, Y. A., and Karpov, V. G., Appl. Phys. Lett. 92 (17), 173501 (2008).Google Scholar
7 Nardone, M., Karpov, V. G., Jackson, D. C. S., and Karpov, I. V., Appl. Phys. Lett. 94, 103509 (2009).Google Scholar
8 Landau, L. D. and Lifshits, I. M., Electrodynamics of Continuous Media. (Pergamon, New York, 1984).Google Scholar
9 Sze, S. M., Physics of Semiconductor Devices. (Wiley, New York, 1981).Google Scholar
10 Kolomiets, B. H., Lebedev, E. A., and Taksami, I. A., Soviet Phys. Semicond. 3, 267 (1969).Google Scholar
11 Walsh, P. J., Vogel, R., and Evans, E. J., Phys. Rev. 178 (3), 1274 (1969).Google Scholar
12 and, V. G. Karpov Oxtoby, D., Phys. Rev. B 54, 9734 (1996).Google Scholar
13 Owen, A. E. and Robertson, J. M., IEEE Trans. Electron Devices 20 (2), 105 (1973).Google Scholar
14 Warren, A. C., IEEE Trans. Electron Devices 20 (2), 123 (1973).Google Scholar