Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T04:02:03.251Z Has data issue: false hasContentIssue false

FET Characteristic of Chemically-Modified CNT

Published online by Cambridge University Press:  31 January 2011

Ryotaro Kumashiro
Affiliation:
[email protected], Tohoku Univ., Department of Physics, Graduate School of Science, 6-3 Aoba Aramaki, Aoba-ku, Sendai, 980-8578, Japan, +81-22-795-6468, +81-22-795-6470
Yan Wang
Affiliation:
[email protected], Tohoku Univ., Department of Physics, Graduate School of Science, Sendai, Japan
Naoya Komatsu
Affiliation:
[email protected], Tohoku Univ., Department of Physics, Graduate School of Science, Sendai, Japan
Katsumi Tanigaki
Affiliation:
[email protected], Tohoku Univ., AIMR-WPI, Sendai, Japan
Get access

Abstract

Electric transport properties of chemically modificated carbon nanotubes (CNT) using Si-containing organic molecules and polymers were investigated by means of the field effect transistors (FET) technique. From the results of FET measurements for each chemically surface modified CNT, it was shown that p-type semiconducting CNT can be converted to n-type ones by physical adsorption of Si-containing organic molecules and polymers having Ph-groups. It is suggested that the electron carrier are doped into CNT from the adsorbed molecules and polymers, and it was also confirmed by the results of adsorption spectra. That is, it can be said that the electronic properties of CNT can be controlled by chemically modifications of outer surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kong, J. Franklin, N. R. Zhou, C. Chapline, M. G. Peng, S. Cho, K. and Dai, H. Science, 287, 622 (2000).Google Scholar
2 Bachtold, A. Hadley, P. Nakanishi, T. and Dekker, C. Science, 294, 1317 (2001).Google Scholar
3 Derycke, V. Martel, R. Appenzeller, J. and Avouris, Ph. Nano Lett., 1, 453 (2001).Google Scholar
4 Durkop, T. Getty, S. A. Cobas, E. and Fufrer, M. S. Nano Lett. 4, 35 (2004).Google Scholar
5 Martel, R. Schmidt, T. Shea, H. R. Hertel, T. and Avouris, Ph. Appl. Phys. Lett., 73, 2447 (1998).Google Scholar
6 Xiao, K. Liu, Y. Hu, P. Yu, G. Sun, Y. and Zhu, D. J. Am. Chem. Soc., 127, 8614 (2005).Google Scholar
7 Zhou, C. Kong, J. Yenilmez, E. and Dai, H. Science, 290, 1552 (2000).Google Scholar
8 Takenobu, T. Takano, T. Shiraishi, M. Murakami, Y. Ata, M. Kataura, H. Achiba, Y. and Iwasa, Y. Nature Materials, 2, 683 (2003).Google Scholar
9 Chen, J. Hamon, M. A. Hu, H. Chen, Y. Rao, A. P. Eklund, P. C. and Haddon, R. C. Science, 282, 95 (1998).Google Scholar
10 Mickelson, E. T. Huffman, C. B. Rinzler, A. G. Smalley, R. E. Hauge, R. H. and Margrave, J. L., Chem. Phys. Lett., 296, 188 (1998).Google Scholar
11 Kumashiro, R. Ohashi, H. Akasaka, T. Maeda, Y. Takaishi, S. Yamashita, M. Maruyama, S. Izumida, T. Hatakeyama, R. and Tanigaki, K. Mater. Res. Soc. Symp. Proc., 901E, 0901–Rb21 (2006).Google Scholar
12 Kumashiro, R. Hiroshiba, N. Komatsu, N. Akasaka, T. Maeda, Y. Suzuki, S. Achiba, Y. Hatakeyama, R. and Tanigaki, K. J. Phys. Chem. Solid 69, 1206 (2008).Google Scholar
13 Maeda, Y. Kanda, M. Hashimoto, M. Hasegawa, T. Kimura, S. Lian, Y. Wakahara, T. Akasaka, T. Kazaoui, S. Minami, N. Okazaki, T. Hayamizu, Y. Hata, K. Lu, J. and Nagase, S. J. Am. Chem. Soc., 128, 12239 (2006).Google Scholar