Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T03:41:40.015Z Has data issue: false hasContentIssue false

Fabrication of Electrode With 3 Dimensionally Ordered Structure for All-Solid-State Battery

Published online by Cambridge University Press:  01 February 2011

Masashi Kotobuki
Affiliation:
Kiyoshi Kanamura
Affiliation:
[email protected], tokyo metropolitan university, tokyo, Japan
Get access

Abstract

Fabrication of all-solid-state Li battery has been strongly required to overcome safety issue of present Li battery. One of promising structures for ceramics electrolyte in all-solid-state battery is 2-layered structure composed of 3 dimensionally ordered macroporous layer (3DOM) and dense layer. In this study, we prepared LLT ceramics electrolyte with the 2-layered structure by suspension filtration method. Thicknesses of the dense and the porous layers were about 17 and 111 μm, respectively. The porous layer involved uniform pores of 1.8 μm in diameter. An electrochemical property of LiMn2O4/2-layered LLT composite, prepared by impregnation of precursor sol for LiMn2O4 into the pores followed by calcination, was tested. A rechargeable behavior of the composite electrode was clearly observed. From this result, it can be said that the composite can work as rechargeable battery. The discharge capacity of the composite was 27 mA h g-1.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Tarascon, J. M., Armand, A., Nature, 414 (2001) 39.Google Scholar
2 Hoshina, K., Dokko, K., Kanamura, K., J. Electrochemical Soc., 152 (2005) A2138.Google Scholar
3 Dokko, K., Akutagawa, N., Isshiki, Y., Hoshina, K., Kanamura, K., Solid State Ionics, 176 (2005) 2345.Google Scholar
4 Nakano, H., Dokko, K., Hara, M., Isshiki, Y., Kanamura, K., Ionics 14 (2008) 173.Google Scholar
5 Hara, M., Nakano, H., Dokko, K., Okuda, S., Kaeriyama, A., Kanamura, K., J. Power Sources 189 (2008) 485.Google Scholar
6 Thangadurai, V., Kaacj, H., Weppner, W., J. Am. Ceram. Soc. 86 (2003) 437.Google Scholar
7 Thangadurai, V., Adams, S., Weppner, W., Chem. Mater., 16 (2004) 2998.Google Scholar
8 Murgan, R., Thangadurai, V., Weppner, W., Angew. Int. Chem. Ed. 46 (2007) 7778.Google Scholar
9 Knauth, P., Solid State Ionics, 180 (2009) 911.Google Scholar
10 Kotobuki, M., Suzuki, Y., Munakata, H., Kanamura, K., Sato, Y., Yamamoto, K., Yoshida, T., J. Power Sources, 195 (2010) 5784.Google Scholar
11 Kotobuki, M., Suzuki, Y., Munakata, H., Kanamura, K., Sato, Y., Yamamoto, K., Yoshida, T., J. Electrochemical Society, 157(4) (2010) A493.Google Scholar
12 Inaguma, Y., Chen, L., Itoh, M., Makamura, T., Uchida, T., Ikuda, M., Wakihara, M., Solid State Comm. 86 (1993) 689.Google Scholar
13 Harada, Y., Idhigaki, T., Kawai, H., Kuwano, J., Solid State Ionics 108 (1998) 407.Google Scholar
14 Inaguma, Y., Chen, L., Itoh, M., Nakamura, T., Solid State Ionics 70/71 (1994) 196.Google Scholar
15 Dokko, K., Nakata, N., Kanamura, K., J. Power Sources 189(i1) (2009) 783.Google Scholar