Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T15:36:10.984Z Has data issue: false hasContentIssue false

Fabrication and Characterization of Molybdenum Oxide Nanofibers by Electrospinning

Published online by Cambridge University Press:  01 February 2011

Guan Wang
Affiliation:
[email protected], Stony Brook University, Materials Science and Engineering, 700 Health Sciences Drive, Chapin L2176Bx, Stony Brook, NY, 11790, United States, 631-632-8501
Xianrong Huang
Affiliation:
[email protected], Stony Brook University, Materials Science and Engineering, United States
Michael Dudley
Affiliation:
[email protected], Stony Brook University, Materials Science and Engineering, United States
Pelagia-Irene Gouma
Affiliation:
[email protected], Stony Brook University, Materials Science and Engineering, United States
Xiaoqing Yang
Affiliation:
[email protected], Brookhaven National Laboratory, Materials Science, United States
Get access

Abstract

Molybdenum oxide/ Poly (ethylene oxide) composite nanofibers were prepared by combining the sol-gel process and electrspinning technique. An ethanol solution of Poly(ethylene oxide) (PEO) was mixed with molybdenum isopropoxide to form a precursor solution. Composite nanofibers were obtained by electrspinning this viscous solution. By calcination of the composite fibers, pure molybdenum oxide nanofibers and nano-rods were obtained with diameters of 100-nanometer scale. Morphology of the fibers has been characterized by scanning electric microscopy. Components and structures of the final products have been identified by EDAX and grazing incidence XRD. Calcination process has been studied by DSC and TG analysis. The real time dynamics of the structural evolution from composite fibers to nanocrystalline metal oxide fibers has been investigated by synchrotron-based in-situ x-ray diffraction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Wang, Z. L., Adv. Mater. (2000), 12, 1295 Google Scholar
[2] Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B. etc. Adv. Mater. (2003), 15, 353 Google Scholar
[3] Hu, J., Odom, T. W., Lieber, C. M., Acc. Chem. Res. (1999), 32(5), 435 Google Scholar
[4] Gouma, P. I., Rev. Adv. Mater. Sci. (2003), 5, 147 Google Scholar
[5] Canham, L. T., Appl. Phys. Lett. (1990), 57, 1046 Google Scholar
[6] Holmes, J. D., Johnston, K. P., Doty, R. C., Korgel, B. A., Science (2000), 287, 1471 Google Scholar
[7] Hicks, L. D., Dresselhaus, M. S., Phys. Rev. B (1996), 47, 16631 Google Scholar
[8] Arakawa, Y., Sakaki, H., Appl. Phys. Lett. (1982), 40, 939 Google Scholar
[9] Prasad, A. K., Gouma, P., Kubinski, D. J., Visser, J. H., et al. Thin Solid Films (2003), 436, 46 Google Scholar
[10] Prasad, A. K., Gouma, P. I., Journal of Materials Science (2003), 38, 4347 Google Scholar
[11] Prasad, A. K., Kubinski, D. J., Gouma, P. I., Sensors and Actuators B (2003), 93, 25 Google Scholar
[12] Comini, E., Sberveglieri, G., Cantalini, C., et al. Sensors and Actuators B (2000), 68, 168 Google Scholar
[13] Li, Y. X., Galatsis, K., Wlodarski, W., et al. Sensors and Actuators B (2001), 77, 27 Google Scholar
[14] Galatsis, K., Li, Y. X., Wlodarski, W., Sensors and Actuators B (2001), 77, 478 Google Scholar
[15] Moseley, P. T., Williams, D. E., Sensors and Actuators B (1990), 1, 113 Google Scholar
[16] Moos, R., Muller, R., Plog, C., Knequardt, A., Sensors and Actuators B (2002), 83, 181 Google Scholar
[17] Mutschall, D., Holzner, K., Obermeier, E., Sensors and Actuators B (1996), 36, 320 Google Scholar
[18] Ferroni, M., Guidi, V., Martinelli, G., Nelli, P., et al. Thin Solid Films (1997), 307, 148 Google Scholar
[19] Groff, R. P., J. of Catalysis (1984), 86, 215 Google Scholar
[20] Imawan, C., Solzbacher, F., Steffes, H., et al. Sensors and Actuators B (2000), 64, 117 Google Scholar
[21] Dzenis, Y., Science (2004), 304, 1917 Google Scholar
[22] Li, D.. and Xia, Y., Adv. Mater. (2004), 16, 1151 Google Scholar
[23] Li, D.. and Xia, Y., Nano Lett. (2004), 5, 933 Google Scholar
[24] Li, D.. and Xia, Y., Nano Lett. (2003), 3, 555 Google Scholar
[25] Dai, H. Q., Gong, J., Kim, H. Y., Lee, D. R., Nanotechnology (2002), 13, 674 Google Scholar
[26] Ding, B., Kim, H. Y., Gong, J., Lee, D. R., Nanotechnology (2003), 14, 532 Google Scholar
[27] Guan, H., Shao, C. L., Wen, S., Chen, B., Gong, J., et al. Mater. Chem. Phys. (2003) 82, 1002 Google Scholar
[28] Guan, H., Shao, C. L., Wen, S., Chen, B., Gong, J., et al. Inorg. Chem Commun. (2003) 6, 1302Google Scholar
[29] Viswanathamurthi, P., Bhattarai, N., Kim, H. Y., et al. Chem. Phys. Lett. (2003), 374, 79 Google Scholar
[30] Viswanathamurthi, P., Bhattarai, N., Kim, H. Y., Lee, D. R., Scripta Mater. (2003) 49, 577 Google Scholar
[31] Viswanathamurthi, P., Bhattarai, N., Kim, H. Y., Lee, D. R., Nanotechnology (2004), 15, 320 Google Scholar