Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T02:58:04.570Z Has data issue: false hasContentIssue false

Extended Defects in GaN: a Theoretical Study

Published online by Cambridge University Press:  15 February 2011

J. Eisner
Affiliation:
Fachbereich Physik, Universität GH Paderborn, D-33098 Paderborn
Th. Frauenheim
Affiliation:
Fachbereich Physik, Universität GH Paderborn, D-33098 Paderborn
M. Haugk
Affiliation:
Fachbereich Physik, Universität GH Paderborn, D-33098 Paderborn
R. Gutierrez
Affiliation:
Fachbereich Physik, Universität GH Paderborn, D-33098 Paderborn
R. Jones
Affiliation:
Department of Physics, University of Exeter, Exeter, EX4 4QL, UK
M. I. Heggie
Affiliation:
CPES, University of Sussex, Falmer, Brighton, BNI 9QJ, UK
Get access

Abstract

We present density-functional theory studies for a variety of surfaces and extended defects in GaN. According to previous theoretical studies {1010} type surfaces are electrically inactive. They play an important role in GaN since similar configurations occur at open-core screw dislocations and nanopipes as well as at the core of threading edge dislocations. Domain boundaries are found to consist of four-fold coordinated atoms and are also found to be electrically inactive. Thus, except for full-core screw dislocations which possess heavily strained bonds all investigated extended defects do not induce deep states into the band-gap. However, electrically active impurities in particular gallium vacancies and oxygen related defect complexes are found to be trapped at the stress field of the extended defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Northrup, J. E. and Neugebauer, J.. Phys. Rev. B 53, 10477 (1996).Google Scholar
2. Look, D.C. and Sizelove, J.R.. submitted to PRL 1998.Google Scholar
3. Elsner, J., Jones, R., Sitch, P.K.. Porezag, V.D., Elstner, M., Frauenheim, Th., Heggie, M.I., Öberg, S. and Briddon, P.R., Phys. Rev. Lett. 79, 3672 (1997).Google Scholar
4. Elstner, M., Porezag, D., Jungnickel, G., Elsner, I., Haugk, M., Frauenheim, Th., Shuhai, S. and Seifert, G., Phys. Rev. B 58, 7260 (1998).Google Scholar
5. Elsner, J., Jones, R., Haugk, M., Frauenheim, Th., Heggie, M.I., Öberg, S. and Briddon, P. R., Phys. Rev. B 58, 12571 (1998).Google Scholar
6. Xin, Y., Pennycook, S. I., Browning, N. D., Nelist, P. D., Sivananthan, S., Omnbs, F., Beaumont, B., Faurie, J.-P. and Gibart, P.. Appl. Phys. Lett. 72, 2680 (1998).Google Scholar
7. Wright, A. F. and Furthmüller, J., Appl. Phys. Lett. 72, 3467 (1998).Google Scholar
8. Wetzel, C., Suski, T., Ager, J. W., Weber, E. R., Haller, E. E., Fischer, S., Meyer, B. K., Molnar, R. J. and Perlin, P., Phys. Rev. Lett. 78, 3923 (1997).Google Scholar
9. Neugebauer, J. and Walle, C.G. Van de, Festkörperprobleme 35, 25 (1996).Google Scholar
10. Elsner, J., Jones, R., Haugk, M., Gutierrez, R., Frauenheim, Th., Heggie, M. I., Öberg, S. and Briddon, P. R., Appl. Phys. Lett. in press (1998).Google Scholar
11. Neugebauer, J. and Walle, C. Van de, Appl. Phys. Lett. 69, 503 (1996).Google Scholar
12. Bougulawski, P., Briggs, E.L. and Bernholc, J., Phys. Rev. B 51 R17255 (1995).Google Scholar
13. Liliental-Weber, Z., Chen, Y., Ruvimov, S. and Washburn, J., Phys. Rev. Lett. 79, 2835 (1997).Google Scholar
14. Sitar, Z., Paisley, M. I., Yan, B., and Davis, R. F., Mater. Res. Soc. Symp. Proc. 162, 537 (1990).Google Scholar
15. Tanaka, S., Kern, R. Scott, and Davis, R. F., Appl. Phys. Lett. 66, 37 (1995).Google Scholar
16. Smith, D. J., Chandrasekhar, D., Sverdlov, B., Botchkarev, A., Salvador, A., and Morkoc, H., Appl. Phys. Lett. 67, 1830 (1995).Google Scholar
17. Sverdlov, B. N., Martin, G. A., Morkoc, H., and Smith, D. J., Appl. Phys. Lett. 67, 2063 (1995).Google Scholar
18. Rouvière, J.-L., Arlery, M., Bourret, A., Niebuhr, R., and Bachem, K., Inst. Phys. Conf. Series 146, 285 (1995).Google Scholar
19. Xin, Y., Brown, P. D. and Humphreys, C.J., Appl. Phys. Lett. 70, 1308 (1997).Google Scholar
20. Northrup, J. E., Neugebauer, J. and Romano, L. T., Phys. Rev. Lett. 77, 103 (1996).Google Scholar
21. Xin, Y., Pennycook, S. J., Browning, N. D., Nellist, P. D., Sivananthan, S., Faurie, J.-P. and Gibart, P., Nitride Semicond. 482 781, edited by Ponce, F.A., Baars, S.P. Den, Meyer, B.K., Nakamura, S., Strite, S., Mat. Res. Soc., Pennsylvania (1998).Google Scholar
22. Elsner, J., Kaukonen, M., Heggie, M. I., Haugk, M., Frauenheim, Th. and Jones, R., Phys. Rev. B in press (1998).Google Scholar
23. Natusch, M.K.H., Botton, G.A., Broom, R.F., Brown, P.D., Tricker, D.M. and Humphreys, C.J., Nitride Semiconductors 482 763, edited by Ponce, F.A., Baars, S.P. Den, Meyer, B.K., Nakamura, S., Strite, S., Mat. Res. Soc., Pennsylvania (1998).Google Scholar