Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T15:54:55.706Z Has data issue: false hasContentIssue false

Extended Defects in Fe-Implanted InP After Thermal Annealing

Published online by Cambridge University Press:  22 February 2011

C. Frigeri
Affiliation:
CNR-MASPEC Institute, via Chiavari 18/A - 43100 Parma, Italy
C. Bocchi
Affiliation:
CNR-MASPEC Institute, via Chiavari 18/A - 43100 Parma, Italy
A. Carnera
Affiliation:
Physics Department, University of Padova, via Marzolo 8-35131 Padova, Italy
A. Gasparotto
Affiliation:
Physics Department, University of Padova, via Marzolo 8-35131 Padova, Italy
N. Gambacorti
Affiliation:
CNR-MASPEC Institute, via Chiavari 18/A - 43100 Parma, Italy
F. Longo
Affiliation:
CNR-MASPEC Institute, via Chiavari 18/A - 43100 Parma, Italy
Get access

Abstract

The recovery of the implant-induced damage and the defects present after thermal annealing at 650 °C in Fe-implanted InP have been investigated by TEM, RBS and X-ray diffractometry as a function of the annealing time that was varied betweeen 0.5 and 2 h. The near-surface damaged layer was removed only for annealing times ≥ 1.5 h. The annealed samples contained stacking fault tetrahedra of vacancy type, extrinsic dislocation loops and microdefects. These extended defects were mostly localized in a band corresponding to the region of transition between amorphous top layer and crystalline substrate as was detected in the as-implanted sample. Stacking fault tetrahedra and loops have also been observed before and beyond this band, respectively. Such defects could be due to either shear strains at the recrystallization front or implant-induced point defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Pearton, S.J., Mat. Sci. Rep. 4, 313 (1990).Google Scholar
2 Donelly, J.P. and Hurwitz, C.E., Solid State Electron. 21, 475 (1978).Google Scholar
3 Gauneau, M., L'Haridon, H., Rupert, A., and Salvi, M., J. Appl. Phys. 53, 6823 (1982).Google Scholar
4 Ullrich, H., Knecht, A., Bimberg, D., Krautle, H., and Schlaak, W., J. Appl. Phys. 70, 2604 (1991).Google Scholar
5 Ullrich, H., Knecht, A., Bimberg, D., Krautle, H., and Schlaak, W., J. Appl. Phys. 72, 3514 (1992).Google Scholar
6 Gasparotto, A., Camera, A., Arzenton, G., Tromby, M., Pellegrino, S., and Vidimari, F., Caldironi, M., Nucl. Instr. Meth. B 80–81, 773 (1993).Google Scholar
7 Zheng, P., Ruault, M.-O., Kaitasov, O., Crestou, J., Descouts, B., Krauz, P., and Duhamel, N., J. Phys. D 23, 877(1990).Google Scholar
8 Zheng, P., Ruault, M.-O., Denanot, M.F., Descouts, B., and Krauz, P., J. Appl. Phys. 69, 197 (1991).Google Scholar
9 Kringhøj, P., Hansen, J.L., and Shiryaev, S. Yu., J. Appl. Phys. 72, 2249 (1992).Google Scholar
10 Auvray, P., Guivarc'h, A., L'Haridon, H., Pelous, G., Salvi, M., and Henoc, P., J. Appl. Phys. 53, 6202 (1982).Google Scholar
11 Schwarz, S.A., Schwartz, B., Sheng, T.T., Singh, S., and Tell, B., J. Appl. Phys. 58, 1698 (1985).Google Scholar
12 Vidimari, F., Caldironi, M., Di Paola, A., Chen, R., and Pellegrino, S., Electron. Lett. 27, 816 (1991).Google Scholar
13 Halliwell, M. A. G., Lyons, M. H., and Hill, M. J., J. Crystal Growth 68, 523 (1984).Google Scholar
14 Dahmen, U., Ultramicrosc. 30, 102 (1989).Google Scholar
15 Frigeri, C., Camera, A., and Gasparotto, A., Appl. Phys. A, submitted.Google Scholar
16 De Cooman, B.C., McKernan, S., Carter, C.B., Ralston, J.R., Wicks, G.W., and Eastman, L.F., Phil. Mag. Lett. 56, 85 (1987).Google Scholar
17 Coene, W., Bender, H., and Amelinckx, S., Phil. Mag. A 52, 369 (1985).Google Scholar
18 Van Landuyt, J., De Veirman, A., Vanhellemont, J., and Bender, H., Inst. Phys. Conf. Ser. 100, 1 (1989).Google Scholar
19 Christel, L.A. and Gibbons, J.F., J.Appl. Phys. 52, 5050 (1981).Google Scholar
20 Comer, J.J., Eirug Davies, D., and Lorenzo, J.P., J. Electrochem. Soc. 127, 1827 (1980).Google Scholar
21 Pearson, W.B., A Handbook of Lattice Spacings and Structures of Metals and Alloys. (Pergamon, Oxford, 1967), vol. 2. See also ASTM cards.Google Scholar