Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T16:00:35.624Z Has data issue: false hasContentIssue false

Extended Defects in 4H-SiC PiN Diodes

Published online by Cambridge University Press:  11 February 2011

M. E. Twigg
Affiliation:
Electronics Science and Technology Division, Naval Research Laboratory, Washington DC, 20375
R. E. Stahlbush
Affiliation:
Electronics Science and Technology Division, Naval Research Laboratory, Washington DC, 20375
M. Fatemi
Affiliation:
Electronics Science and Technology Division, Naval Research Laboratory, Washington DC, 20375
S. D. Arthur
Affiliation:
General Electric Corporation Research and Development Center, Niskayana, NY
J. B. Fedison
Affiliation:
General Electric Corporation Research and Development Center, Niskayana, NY
J. B. Tucker
Affiliation:
General Electric Corporation Research and Development Center, Niskayana, NY
S. Wang
Affiliation:
Sterling Semiconductor, Danbury, CT
Get access

Abstract

Using site-specific plan-view transmission electron microscopy (TEM) and lightemission imaging (LEI), we have identified SFs formed during forward biasing of 4H-SiC PiN diodes. These SFs are bounded by Shockley partial dislocations and are formed by shear strain rather than by condensation of vacancies or interstitials. Detailed analysis using TEM diffraction contrast experiments reveal SFs with leading carbon-core Shockley partial dislocations as well as with the silicon-core partial dislocations observed in plastic deformation of 4H-SiC at elevated temperatures. The leading Shockley partials are seen to relieve both tensile and compressive strain during PiN diode operation, suggesting the presence of a complex and inhomogeneous strain field in the 4H-SiC layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lendenmann, H., Dahlquist, F., Johansson, N., Söderholm, R., Nilsson, P.A., Bergman, J.P. and Skytt, P., Mater. Sci. Forum 353–356, 727 (2001).Google Scholar
2. Bergman, J. P., Lendenmann, H., Nilsson, P. A., Lindefelt, U. and Skytt, P., Mater. Sci. Forum 353–356, 299 (2001).Google Scholar
3. Liu, J. Q., Skowronski, M., Hallin, C., Soderholm, R., and Lendemann, H., Appl. Phys. Lett. 80, 749 (2001).Google Scholar
4. Galeckas, A., Linros, J., and Breitholtz, B., J. Appl. Phys. 90, 980 (2001).Google Scholar
5. Stahlbush, R. E., Fatemi, M., Fedison, J. B., Arthur, S. D., Rowland, L. B., and Wang, S., J. Electron. Mater. 31, 827 (2002).Google Scholar
6. Perez, R., Phys. Stat. Sol. A 85, 113 (1984).Google Scholar
7. Gevers, R., Van Landuyt, J., and Amelinckx, S., Phys Stat. Sol 11, 689 (1965).Google Scholar
8. Marukawa, K., Philos. Mag. 40, 303 (1979).Google Scholar
9. Ruvimov, S. S., and Scheerschmidt, K., Phys. Stat. Sol. (a) 141, 269 (1994).Google Scholar
10. Hirsh, P., Howie, A., Nicholson, R. B., Pashley, D. W., and Whelan, M. J., Electron Microscopy of Thin Crystals (Krieger, Huntington N.Y., 1977).Google Scholar
11. Hirth, J. P. and Lothe, J., Theory of Dislocations (Krieger, Marabar, Florida, 1992).Google Scholar
12. Pirouz, P., Demenet, J. L., and Hong, M. H., Philos. Mag. A 81, 1207 (2001).Google Scholar
13. Alexander, H., Eppenstein, H., Gottschalk, H., and Wendler, S., J. Phys. Paris, 40, C6 (1979).Google Scholar
14. Twigg, M. E., Stahlbush, R. E., Fatemi, M., Arthur, S. D., Fedison, J. B., Tucker, J. B., and Wang, S., submitted to Applied Physics Letters.Google Scholar
15. Galeckas, A., Linnros, J., and Pirouz, P., Appl. Phys. Lett. 81, 883 (2002).Google Scholar
16. Pirouz, P., Solid State Phenom. 56, 107 (1997).Google Scholar
17. Levade, C., Faress, A., and Vanderschaeve, G., Philos. Mag. A 69, 855 (1994).Google Scholar