Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T18:45:40.618Z Has data issue: false hasContentIssue false

Excitation Spectra in the Time-Dependent Density-Functional Theory with Gradient Correction

Published online by Cambridge University Press:  15 February 2011

Naoto Uimezawa
Affiliation:
Department of Physics, Tokyo Institute of Technology 2–12–1 Oh-okaama, Meguro-ku, Tokyo 1.52-8551, JAPAN
Susumu Saito
Affiliation:
Department of Physics, Tokyo Institute of Technology 2–12–1 Oh-okaama, Meguro-ku, Tokyo 1.52-8551, JAPAN
Get access

Abstract

We study tile optical absorption spectra of Na clusters using the time-dependent density-functional theory with gradient correction. A jellium-sphere background model, which is free from basis-set incompleteness error and is suitable for the comparison of various theoretical methods, is adopted. For energies of surface-plasinon excitations governing profiles of photoabsorption spectra with huge oscillator strengths., the gradient correction by van Leeiiwen and Baerends with correct asymptotic behavior of the effective potential is found to show considerable improvement over the time-dependent local-density approximation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hoehmiberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964).Google Scholar
2. Kohn, W. and Sham, L. J., Phys. Rev. 140, A1133 (1965).Google Scholar
3. Stott, M. J., and Zaremba, E., Phys. Rev. A 21, 12 (1980); A. Zangwill and P. Soveni, Phys. Rev. A 21, 1561 (1980).Google Scholar
4. Ekardt, W., Phys. Rev. B 29, 1558 (1984).Google Scholar
5. Saito, S., Bertsch, G. F., and Tomingek, D., Phys. Rev. B 43, 6804 (1991).Google Scholar
6. Rubio, A., Alonmso, J. A., Blase, X., Balbis, L. C., and Louie, S. G., Phys. Rev. Lett. 77, 247 (1996).Google Scholar
7. Yabana, K. and Bertsch, G. F., Phys. Rev. B 54, 4484 (1996).Google Scholar
8. Casida, M. E., Jamorski, C., Casida, K. C., and Salahub, D. R., J. Chem. Phys. 108, 4439 (1998).Google Scholar
9. Perdew, J. P. and Zunger, A., Phys. Rev. B 23. 5048 (1981).Google Scholar
10. Barth, U. von and Hedin, L., J. Phys. C 5. 1629 (1972).Google Scholar
11. Becke, A. D., Phys. Rev. A 38, 3098 (1988).Google Scholar
12. Perdew, J. P., Chievary, I. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. I., and Fiolhlais, C., Phys. Rev. B 46, 6671 (1992).Google Scholar
13. Saito, S., Yabana, K., and Bertsch, G. F., to be published.Google Scholar
14. See, for review, Heer, W. A. de, Knight, W. D., Chou, M. Y., and Cohien, M. L., in Solid State Physics, edited by Ehmrenreich, H., Seitz, F., and Turnbull, D. (Academic, New York, 1987), Vol. 40, p.98.Google Scholar
15. Leeuwen, R. van and Bacrends, E. J., Phys. Rev. A 49. 2421 (1994).Google Scholar
16. Selby, K. et al. , Phys. Rev. B 43, 4565 (1991).Google Scholar
17. Schmidt, M. and Haberland, H., Euro. Phys. J. D 6 109 (1999).Google Scholar