Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T03:57:32.405Z Has data issue: false hasContentIssue false

Evolution of the Transrotational Structure During Crystallization of Amorphous Ge2Sb2Te5 Thin Films

Published online by Cambridge University Press:  31 January 2011

Emanuele Rimini
Affiliation:
[email protected], Università di Catania, Catania, Italy
Riccardo De Bastiani
Affiliation:
[email protected], Università di Catania, Catania, Italy
Egidio Carria
Affiliation:
[email protected], Università di Catania, Catania, Italy
Maria Grazia Grimaldi
Affiliation:
[email protected], Università di Catania, Catania, Italy
Giuseppe Nicotra
Affiliation:
[email protected], CNR-IMM, Catania, Italy
Corrado Bongiorno
Affiliation:
[email protected], CNR-IMM, Catania, Italy
Corrado Spinella
Affiliation:
[email protected], CNR-IMM, Catania, Italy
Get access

Abstract

The crystallization of amorphous Ge2Sb2Te5 thin films has been studied by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The analysis has been performed on partially crystallized films, with a surface crystalline fraction (fS) ranging from 20% to 100%. XRD analysis indicates the presence, in the partially transformed layer, of grains with average lattice parameters higher than that of the equilibrium metastable cubic phase (from 6.06 Å at fS=20% to 6.01 Å at fS=100%). The amorphous to crystal transition, as shown by TEM analysis, occurs through the nucleation of face-centered-cubic crystal domains at the film surface. Local dimples appear in the crystallized areas, due to the higher atomic density of the crystal phase compared to the amorphous one. At the initial stage of the transformation, a fast bi-dimensional growth of such crystalline nucleus occurs by the generation of transrotational grains in which the lattice bending gives rise to an average lattice parameter significantly larger than that of the face-centered-cubic phase in good agreement with the XRD data. As the crystallized fraction increases above 80%, dimples and transrotational structures start to disappear and the lattice parameter approaches the bulk value.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Wuttig, M. and Yamada, N., Nature Mater. 6, 824 (2007)Google Scholar
[2] Kooi, B. J. and Hosson, J. Th. M. De, J. Appl. Phys. 92, 3584 (2002).Google Scholar
[3] and, B. J. Kooi Hosson, J. Th. M. De, J. Appl. Phys. 95, 4714 (2004).Google Scholar
[4] Kalb, J., Wen, C.Y., Spaepen, F., Dieker, H. and Wuttig, M., J. Appl. Phys. 98, 054902 (2005).Google Scholar
[5] Bastiani, R. De, Piro, A. M., Grimaldi, M. G., Rimini, E., Baratta, G. A., and Strazzulla, G., Appl. Phys. Lett. 92, 241925 (2008)Google Scholar
[6] Kim, D., Merget, F., Laurenzis, M., Bolivar, P. H., and Kurz, H., J. Appl. Phys. 97, 083538 (2005)Google Scholar
[7] Yamada, N., Matsunaga, T., J. Appl. Phys. 88, 7020 (2000)Google Scholar
[8] Alberti, A., Bongiorno, C., Cafra, B., Mannino, G., Rimini, E., Metzger, T., Mocuta, C., Kammler, T., and Feudel, T., Acta Crystallogr., Sect. B: Struct. Sci. B61, 486 2005 Google Scholar
[9] Kolosov, V. Yu, Tholén, A. R. Acta Mater. 48, 1829 (2000)Google Scholar
[10] Wuttig, M., Detemple, R., Friedrich, I., Njoroge, W., Thomas, I., Weidenhof, V., Woltgens, H.-W., Ziegler, S., J. Magn. Magn. Mater. 249, 492 (2002).Google Scholar