Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T02:47:37.887Z Has data issue: false hasContentIssue false

Eu3+-Doped Y2O3-SiO2 Nanocomposite Obtained by a Sol-Gel Method

Published online by Cambridge University Press:  21 March 2011

Carla Cannas
Affiliation:
Dipartimento di Scienze Chimiche, Università di Cagliari, SP Sestu-Monserrato, Km 0.700, I-09042 Monserrato, Cagliari, Italy
Mariano Casu
Affiliation:
Dipartimento di Scienze Chimiche, Università di Cagliari, SP Sestu-Monserrato, Km 0.700, I-09042 Monserrato, Cagliari, Italy
Roberta Licheri
Affiliation:
Dipartimento di Scienze Chimiche, Università di Cagliari, SP Sestu-Monserrato, Km 0.700, I-09042 Monserrato, Cagliari, Italy
Anna Musinu
Affiliation:
Dipartimento di Scienze Chimiche, Università di Cagliari, SP Sestu-Monserrato, Km 0.700, I-09042 Monserrato, Cagliari, Italy
Giorgio Piccaluga
Affiliation:
Dipartimento di Scienze Chimiche, Università di Cagliari, SP Sestu-Monserrato, Km 0.700, I-09042 Monserrato, Cagliari, Italy
Adolfo Speghini
Affiliation:
Dipartimento Scientifico e Tecnologico, Università di Verona, Ca' Vignal, Strada Le Grazie 15, I-37134 Verona, Italy
Marco Bettinelli
Affiliation:
Dipartimento Scientifico e Tecnologico, Università di Verona, Ca' Vignal, Strada Le Grazie 15, I-37134 Verona, Italy
Get access

Abstract

A Y2O3-SiO2 nanocomposite doped with Eu3+ was obtained by a sol-gel method and characterized by X-ray diffraction, IR, 29Si NMR and laser-excited luminescence spectroscopy. It was found that small (2-3 nm) yttria nanoparticles are homogeneously dispersed in, and interacting with, the amorphous silica matrix. Luminescence spectroscopy indicates that the Eu3+ ion is preferentially located inside or at the surface of highly disordered Y2O3 nanoparticles. These luminescent nanocomposites form a class of materials which could find applications in the field of phosphors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Blasse, G., and Grabmaier, B. C., Luminescent Materials (Springer-Verlag, Berlin, 1994).Google Scholar
2. Ye, T., Guiwen, Z., Weiping, Z. and Shangda, X., Mater. Res. Bull. 32, 501 (1997).Google Scholar
3. Li, Q., Gao, L. and Yan, D., Chem. Mater. 11, 533 (1999).Google Scholar
4. Bünzli, J. -C. G., in: Bünzli, J. -C. G. and Choppin, G. R. (Eds.), Lanthanide Probes in Life, Chemical and Earth Sciences: Theory and Practice, (Elsevier, Amsterdam, 1989, p. 219).Google Scholar
5. Piccaluga, G., Corrias, A., Ennas, G. and Musinu, A., Mater. Sci. Foundation ISSN, Ed. Magini, M. and Wohlbier, F. H. (Trans Tech. Publ.Inc NH, USA) Vol. 13, p. 1, (2000).Google Scholar
6. Roy, S. and Chakravorty, D., J. Mater. Res. 9, 2314 (1994).Google Scholar
7. Cannas, C., Gatteschi, D., Musinu, A., Sangregorio, C., Piccaluga, G., J. Phys. Chem. B, 102, 7721 (1998).Google Scholar
8. Engelhardt, G. and Michel, D., High Resolution Solid State NMR of Solids and Zeolites, (J. Wiley & Sons, New York, 1987), chapter 5.Google Scholar
9. Lippmaa, E., Magi, M., Samoson, A., Engelhardt, G. and Grimmer, A. R., J. Amer. Chem. Soc. 102, 4889 (1980).Google Scholar
10. Bruni, S., Cariati, F., Casu, M., Lai, A., Musinu, A., Piccaluga, G., Solinas, S., NanoStrucur. Mater. 11, 573 (1999).Google Scholar
11. Ferrari, M., Campostrini, R., Carturan, G. and Montagna, M., Phil. Mag. B 65, 251 (1992).Google Scholar
12. Campostrini, R., Carturan, G., Ferrari, M., Montagna, M. and Pilla, O., J. Mater. Sci. 7, 745 (1992).Google Scholar
13. Sharma, P. K., Nass, R. and Schmidt, H., Opt. Mater. 10, 161 (1998).Google Scholar
14. Sharma, P. K., Jilavi, M. H., Schmidt, H. and Varadan, V. K., Int. J. Inorg. Mater. 2, 407 (2000).Google Scholar