No CrossRef data available.
Published online by Cambridge University Press: 15 February 2011
The escape rate is calculated for an electron in a one-dimensional potential well. First-order time-dependent perturbation theory is used with solutions of Schrödinger's equation and a set of coupled rate equations is numerically solved. The time evolution of an ensemble of one-electron systems is followed and the fraction of systems that remain in a bound state is found to decay exponentially as time passes. The characteristic time constant for the decay grows exponentially with an increase in the well depth. This is analogous to Kramers' result for the classical escape problem.