Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T02:51:32.577Z Has data issue: false hasContentIssue false

Enhanced Ion mobility in Aluminosilicate/Polysiloxane Network Polyelectrolytes

Published online by Cambridge University Press:  10 February 2011

David P. Siska
Affiliation:
Northwestern University, Department of Chemistry and Materials Research Center 2145 Sheridan Road, Evanston, IL 60208-3113
Duward F. Shriver
Affiliation:
Northwestern University, Department of Chemistry and Materials Research Center 2145 Sheridan Road, Evanston, IL 60208-3113
Get access

Abstract

A new series of polysiloxane-based single-ion conductors was prepared. These contain solvating oligoether sidechains and covalently linked aluminosilicate or alkoxy/siloxy-aluminate anions attached to the polysiloxane backbone. Of these two systems, the polymers containing aluminosilicate [(SiO)4Al] anions show higher room temperature conductivities (10−6 S/cm) than those with alkoxy/siloxyaluminate [(SiO)2(CH2O)2A1] anions (10−7 S/cm). The incorporation of longer covalent tethers between the alkoxy/siloxyaluminate anion and the polymer backbone results in enhanced room temperature conductivities at high ion loadings. Differential scanning calorimetry data provide a rationale for the high conductivity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Doyle, M., Fuller, T. F., and Newman, J., J. Electrochem. Soc. 140, 1526(1993).Google Scholar
2. Bruce, P. G., Hardgrave, M. T., and Vincent, C. A., Solid State Ionics 53–56, 1087 (1992).Google Scholar
3. Bouridah, A., Dalard, F., Deroo, D., and Armand, M. B., Solid State Ionics 18–19, 287 (1986).Google Scholar
4. Bhattacharja, S., Smoot, S. W., and Whitmore, D. H., Solid State Ionics 18–19, 306 (1986).Google Scholar
5. Doan, K. E., Ratner, M. A., and Shriver, D. F., Chem. Mater. 3, 418 (1991).Google Scholar
6. Rawsky, G. C., Fujinami, T., and Shriver, D. F., Chem. Mater. 6, 2208(1994).Google Scholar
7. Fujinami, T., Tokimune, A., Mehta, M. A., Shriver, D. F., and Rawsky, G. C., Chem. Mater. 9, 2236 (1997).Google Scholar
8. Onishi, K., Matsumoto, M., Nakacho, Y., and Shigehara, K., Chem. Mater. 8, 469(1996).Google Scholar
9. Onishi, K., Matsumoto, M., Shigehara, K., Chem. Mater. 10, 927(1998).Google Scholar
10. Ratner, M. A. and Shriver, D. F., Chem. Rev. 88, 109(1988).Google Scholar
11. Zhou, G., Khan, I. M., and Smid, J., Macromol. 26, 2202(1991).Google Scholar
12. Tada, Y., Sato, M., Takeno, N., Nakacho, Y., and Shigehara, K., Chem. Mater. 6, 27(1994).Google Scholar
13. Ganapathiappan, S., Chen, K., Shriver, D. F., J. Am. Chem. Soc. 117, 2344(1995).Google Scholar
14. Yeh, T. F., Okamoto, Y., and Skotheim, T. A., Mol. Cryst. Liq. Cryst. 190, 205(1990).Google Scholar
15. A similar polymer architecture based on POE was investigated by Benrabah, D., Sylla, S., Sanchez, J.-Y., and Armand, M., Electrochimica Acta 40, 2259(1995).Google Scholar