Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T03:50:09.108Z Has data issue: false hasContentIssue false

Electronic Transport Characterization of BiVO4 Using AC Field Hall Technique

Published online by Cambridge University Press:  03 March 2014

Jeffery Lindemuth
Affiliation:
Lake Shore Cryotronics, Westerville Ohio 43082 (USA)
Alexander J. E. Rettie
Affiliation:
McKetta Department of Chemical Engineering, The University of Texas at Austin, TX 78712 (USA)
Luke G. Marshall
Affiliation:
Materials Science and Engineering Program, Texas Materials Institute, Department of Mechanical Engineering, The University of Texas at Austin, TX 78712 (USA)
Jianshi Zhou
Affiliation:
Materials Science and Engineering Program, Texas Materials Institute, Department of Mechanical Engineering, The University of Texas at Austin, TX 78712 (USA)
C. Buddie Mullins
Affiliation:
McKetta Department of Chemical Engineering, The University of Texas at Austin, TX 78712 (USA) Center for Electrochemistry, Department of Chemistry and Biochemistry, The University of Texas at Austin, TX 78712 (USA) Materials Science and Engineering Program, Texas Materials Institute, Department of Mechanical Engineering, The University of Texas at Austin, TX 78712 (USA)
Get access

Abstract

Bismuth vanadate (BiVO4) is a photoelectrode for the oxidation of water. It is of fundamental importance to understand the electrical and photoelectrochemical properties of this material. In metal oxides, the electronic transport is described by the small polaron model, first described by Mott. In this model, the resistivity varies with temperature as $\rho \,\left( T \right)\, \propto \,Te^{({{E_a } \mathord{\left/ {\vphantom {{E_a } {(k_B T))}}} \right. \kern-\nulldelimiterspace} {(k_B T))}}} $, where Ea is the hopping activation energy, kB is the Boltzmann constant and T is the absolute temperature. Resistivity measurements confirm that small polaron hopping dominates in temperature ranges from 250 K to 300 K. In addition measurements from 175K to 250K show the variable range hopping dominates the transport. To this end, the electronic transport properties of BiVO4 single crystal were characterized using resistivity measurements and Hall effect measurements over temperatures ranging from 175 K to 300 K.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bard, A. J.; Fox, M. A. Acc. Chem. Res. 1995, 28, 141.CrossRefGoogle Scholar
Grätzel, M. Nature 2001, 414, 338.CrossRefGoogle Scholar
Ni, M.; Leung, M. K.; Leung, D. Y.; Sumathy, K. Renewable Sustainable Energy Rev. 2007, 11, 401.CrossRefGoogle Scholar
Sivula, K.; Le Formal, F.; Grätzel, M. ChemSusChem 2011, 4, 432.CrossRefGoogle Scholar
Liu, X.; Wang, F.; Wang, Q. Phys. Chem. Chem. Phys. 2012, 14, 7894.CrossRefGoogle Scholar
Pilli, S. K.; Furtak, T. E.; Brown, L. D.; Deutsch, T. G.; Turner, J. A.; Herring, A. M. Energy Environ. Sci. 2011, 4, 5028.CrossRefGoogle Scholar
Luo, W.; Yang, Z.; Li, Z.; Zhang, J.; Liu, J.; Zhao, Z.; Wang, Z.; Yan, S.; Yu, T.; Zou, Z. Energy Environ. Sci. 2011, 4, 4046.CrossRefGoogle Scholar
Luo, W.; Wang, J.; Zhao, X.; Zhao, Z.; Li, Z.; Zou, Z. Phys. Chem. Chem. Phys. 2013, 15, 1006.CrossRefGoogle Scholar
Luo, W.; Li, Z.; Yu, T.; Zou, Z. J. Phys. Chem. C 2012, 116, 5076.CrossRefGoogle Scholar
Ye, H.; Park, H. S.; Bard, A. J. J. Phys. Chem. C 2011, 115, 12464.CrossRefGoogle Scholar
Zhong, D. K.; Choi, S.; Gamelin, D. R. J. Am. Chem. Soc. 2011, 133, 18370.CrossRefGoogle Scholar
Abdi, F. F.; Firet, N.; van de Krol, R. ChemCatChem 2013, 5, 490.CrossRefGoogle Scholar
Park, H. S.; Kweon, K. E.; Ye, H.; Paek, E.; Hwang, G. S.; Bard, A. J. J. Phys. Chem. C 2011, 115, 17870.CrossRefGoogle Scholar
Berglund, S. P.; Rettie, A. J. E.; Hoang, S.; Mullins, C. B. Phys. Chem. Chem. Phys. 2012, 14, 7065.CrossRefGoogle Scholar
Rettie, A. J. E., et al. . J. Am. Chem. Soc. 2013 135(30): 1138911396.CrossRefGoogle Scholar
Lindemuth, J.; Mizuta, S.-I. In SPIE Solar Energy + Technology; International Society for Optics and Photonics: Bellingham, WA, 2011; p 81100I.Google Scholar
Look, D. C. Electrical characterization of GaAs materials and devices; Wiley: New York, 1989.Google Scholar
Mott, N. F.; Davis, E. A. Electronic processes in non-crystalline materials, 2nd ed.; OUP: Oxford, U.K., 1979.Google Scholar
Emin, D.; Seager, C.; Quinn, R. K. Phys. Rev. Lett. 1972, 28, 813.CrossRefGoogle Scholar
Austin, I. G.; Mott, N. F. Adv. Phys. 1969, 18, 41.CrossRefGoogle Scholar