Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T03:21:06.219Z Has data issue: false hasContentIssue false

Electronic structure near the band gap of heavily nitrogen doped GaAs and GaP

Published online by Cambridge University Press:  21 March 2011

Yong Zhang
Affiliation:
B. Fluegel
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard Golden, CO 80401, USA
M. Hanna
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard Golden, CO 80401, USA
A. Duda
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard Golden, CO 80401, USA
A. Mascarenhas
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard Golden, CO 80401, USA
Get access

Abstract

Isoelectronic impurity nitrogen atoms have been found to generate a series of localized states in GaP and GaAs. These states can be either bound (within the band gap) or resonant (above the band gap) when in the dilute doping limit (roughly < 1019 cm−3 for GaP and < 1018 cm−3 for GaAs). With increasing nitrogen doping level, a shift of the absorption edge from the binary band gap has been observed for the so-called GaPN or GaAsN alloy. We discuss the similarity and dissimilarity between the two systems in the following aspects: (1) How does the nitrogen doping perturb the host band structure? (2) How do the nitrogen bound states evolve with increasing nitrogen doping level? (3) What are the dominant contributors to the band edge absorption? And (4) does a universal model exist for GaPN and GaAsN? Other issues that will be discussed are: how does one define the band gap for these materials, and what is the relevance of various theoretical band structure calculations to the experimentally measured parameters.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Weyers, M., Sato, M., and Ando, H., Jpn. J. Appl. Phys. 31, L853 (1992).Google Scholar
2. Baillargeon, J. N., Cheng, K. Y., Hofler, G. E., Pearah, P. J., and Hsieh, K. C., Appl. Phys. Lett. 60, 2540 (1992).Google Scholar
3. Zhang, Y. and Ge, W.-K., J. Lumin. 85, 247 (2000).Google Scholar
4. Mascarenhas, A. and Zhang, Y., Current Opinions in Solid State and Material Science 5, 253 (2001).Google Scholar
5. Thomas, D. G., Hopfield, J. J., and Frosch, C. J., Phys. Rev. Lett. 15, 857 (1965).Google Scholar
6. Wolford, D. J., Bradley, J. A., Fry, K., Thompson, J., and King, H. E., In Inst. Phys. Conf. Ser. No. 65, ed. Stillman, G. E. (The Institute of Physics, Bristol, 1983), p. 477 Google Scholar
7. Scheabe, R., Seifert, W., Bugge, F., Bindemann, R., Agekyan, V. F. and Pogarev, S. V., Solid State Commun. 55, 167 (1985); X. Liu, M.-E. Pistol, L. Samuelson, S. Schwetlick and W. Seifert, Appl. Phys. Lett. 56, 1451 (1990).Google Scholar
8. Shan, W., Walukiewicz, W., Ager, J. W. III, Haller, E. E., Geisz, J. F., Friedman, D. J., Olson, J. M. and Kurtz, S. R., Phys. Rev. Lett. 82, 1221 (1999).Google Scholar
9. Shan, W., Walukiewicz, W., Yu, K. M., Wu, J., Ager, J. W. III, Haller, E. E., Xin, H. P., and Tu, C. W., Appl. Phys. Lett. 76, 3251 (2000).Google Scholar
10. Jones, E. D., Modline, N. A., Allerman, A. A., Kurtz, S. R., Wright, A. F., Tozer, S. T., and Wei, X., Phys. Rev. B 60, 4430 (1999).Google Scholar
11. Mattila, T., Wei, S.-H., and Zunger, A., Phys. Rev. B 60, R11245 (1999).Google Scholar
12. Kent, P. R. C. and Zunger, A., Phys. Rev. Lett. 86, 2613 (2001).Google Scholar
13. Kent, P. R. C. and Zunger, A., Phys. Rev. B 64, 115208 (2001).Google Scholar
14. Al-Yacoub, A. and Bellaiche, L., Phys. Rev. B 62, 10847 (2000).Google Scholar
15. Zhang, Y., Mascarenhas, A., Xin, H. P., and Tu, C. W., Phys. Rev. B 61, 7479 (2000).Google Scholar
16. Zhang, Y., Fluegel, B., Mascarenhas, A., Xin, H. P., and Tu, C. W., Phys. Rev. B 62, 4493 (2000).Google Scholar
17. Thomas, D. G. and Hopfield, J. J., Phys. Rev. 150, 680 (1965).Google Scholar
18. Hopfield, J. J., Dean, P. J., and Thomas, D. G., Phys. Rev. 158, 748 (1966).Google Scholar
19. Yaguchi, H., Miyoshi, S., Biwa, G., Kibune, M., Onabe, K., Shiraki, Y. and Ito, R., J. Cryst. Growth 170, 353 (1997).Google Scholar
20. Zhang, Y., Mascarenhas, A., Geisz, J. F., Xin, H. P., and Tu, C. W., Phys. Rev. B 63, 85205 (2001).Google Scholar
21. Zhang, Y., Francoeur, S., Mascarenhas, A., Xin, H. P., and Tu, C. W., Proc. ICNS-4, Phys. Stat. Sol. (b) 228, 287 (2001).Google Scholar
22. Zhang, Y., Mascarenhas, A., Xin, H. P., and Tu, C. W., Phys. Rev. B 63, R161303 (2001).Google Scholar
23. Uesugi, K., Suemune, I., Hasegawa, T., Akutagawa, T., and Nakamura, T., Appl. Phys. Lett. 76, 1285 (2000).Google Scholar
24. Perkins, J. D., Mascarenhas, A., Zhang, Y., Geisz, J. F., Friedman, D. J., Olson, J. M., and Kurtz, S. R., Phys. Rev. Lett. 82, 3312 (1999).Google Scholar
25. Klar, P. J., Güning, H., Heimbrodt, W., Koch, J., Höhnsdorf, F., Stolz, W., Vicente, P. M. A., and Camassel, J., Appl. Phys. Lett. 76, 3439 (2000).Google Scholar
26. Shan, W., Walukiewicz, W., Yu, K. M., Ager, J. W. III, Haller, E. E., Geisz, J. F., Friedman, D. J., Olson, J. M. and Kurtz, S. R., Phys. Rev. B 62, 4211 (2000).Google Scholar
27. Shan, W., Walukiewicz, W., Yu, K. M., Ager, J. W. III, Haller, E. E., Geisz, J. F., Friedman, D. J., Olson, J. M., Kurtz, S. R., Xin, H. P., and Tu, C. W., phys. stat. sol (b) 223, 75 (20001).Google Scholar
28. Wei, S.-H and Zunger, A., Phys. Rev. Lett. 76, 664 (1996).Google Scholar
29. Wang, L.-W., Appl. Phys. Lett. 78, 1565 (2001).Google Scholar
30. Bellaiche, L. L., Wei, S.-H., and Zunger, A., Appl. Phys. Lett. 70, 3558 (1997).Google Scholar
31. Zhang, Y., Mascarenhas, A., and Wang, L.-W., Phys. Rev. B 63, R201312 (2001).Google Scholar
32. Bellaiche, L. L., Wei, S.-H., and Zunger, A., Phys. Rev. B 54, 17568 (1996).Google Scholar
33. Lightowlers, E. C., North, J. C., and Lorimor, O. G., J. Appl. Phys. 45, 2191 (1974).Google Scholar
34. Sturge, M. D., Cohen, E., and Rodgers, K. F., Phys. Rev. B 15, 3169 (1977).Google Scholar
35. Fehrenbach, G. W., Schafer, W., Treusch, J., and Ulbrich, R. G., Phys. Rev. Lett. 49, 1281 (1982).Google Scholar
36. Bellaiche, L., Modline, N. A., and Jones, E. D., Phys. Rev. B 62, 15311 (2000).Google Scholar