Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T02:53:57.502Z Has data issue: false hasContentIssue false

Electronic Structure Calculations on a Real-Space Mesh with Multigrid Acceleration

Published online by Cambridge University Press:  10 February 2011

D. J. Sullivan
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695-8202
E. L. Briggs
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695-8202
C. J. Brabec
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695-8202
J. Bernholc
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695-8202
Get access

Abstract

We have developed a set of techniques for performing large scale ab initio calculations using multigrid accelerations and a real-space grid as a basis. The multigrid methods permit efficient calculations on ill-conditioned systems with long length scales or high energy cutoffs. We discuss the design of pseudopotentials for real-space grids, and the computation of ionic forces. The technique has been applied to several systems, including an isolated C60 molecule, the wurtzite phase of GaN, a 64-atom cell of GaN with the Ga d-states in valence, and a 443-atom protein. The method has been implemented on both vector and parallel architectures. We also discuss ongoing work on O(N) implementations and solvated biomolecules.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Car, R. and Parrinello, M., Phys. Rev. Lett. 55, 2471 (1985).Google Scholar
2. For a recent review, see Payne, M. C., Allan, D. C., Teter, M. P., Arias, T. A., and Joannopoulos, J. D., Rev. Mod. Phys. 64, 1045 (1992).Google Scholar
3. See, for example, Stich, I., Payne, M. C., King-Smith, R. D., and Lin, J.-S., Phys. Rev. Lett. 68, 1351 (1992); K. D. Brommer, M. Needels, B. E. Larson, and J. D. Joannopoulos, ibid. 68, 1355 (1992); P. Boguslawski, Q.-M. Zhang, Z. Zhang, and J. Bernholc, ibid. 72, 3694 (1994).Google Scholar
4. Vanderbilt, D., Phys. Rev. B 41, 7892 (1990).Google Scholar
5. Rappe, A. M., Rabe, K. M., Kaxiras, E., and Joannopoulos, J. D., Phys. Rev. B 41, 1227 (1990); J.-S. Lin, A. Qteish, M. C. Payne, V. Heine, 47, 4174 (1993); G. Li and S. Rabii, unpublished (1992).Google Scholar
6. Blöchl, P. E., Phys. Rev. B 41, 5414 (1990).Google Scholar
7. Gygi, F., Europhys. Lett. 19, 6617 (1992); F. Gygi, Phys. Rev. B 48, 11692 (1993);Google Scholar
8. Hamann, D. R., Phys. Rev. B 51, 7337 (1995); 51, 9508 (1995);Google Scholar
9. Devenyi, A., Cho, K., Arias, T. A., and Joannopoulos, J. D., Phys. Rev. B 49, 13373 (1994).Google Scholar
10. Teter, M. P., Payne, M. C., and Allan, D. C., Phys. Rev. B 40, 12255 (1989).Google Scholar
11. Arias, T. A., Payne, M. C., and Joannopoulos, I. D., Phys. Rev. Lett. 69, 1077 (1992); Phys. Rev. B 45, 1538 (1992).Google Scholar
12. Bernholc, J., Yi, J.-Y., and Sullivan, D. J., Faraday Disc. Chem. Soc. 92, 217 (1991).Google Scholar
13. Brandt, A., Math. Comp. 31, 333 (1977); GMD Studien, 85, 1 (1984).Google Scholar
14. Yang, W., Phys. Rev. Lett. 66, 1438 (1991); G. Galli and M. Parrinello, 69, 3547 (1992); F. Mauri, G. Galli, and R. Car, Phys. Rev. B 47, 9973 (1993); P. Ordejón, D. A. Drabold, M. P. Grumbach, and R. M. Martin, ibid. 48, 14646 (1993).Google Scholar
15. Baroni, S. and Giannozzi, P., Europhys. Lett. 17, 547 (1992); X.-P. Li, R. Nunes, and D. Vanderbilt, Phys. Rev. B 47, 10891 (1993); M. Daw, 47, 10895 (1993); W. Hierse and E. Stechel, ibid. 50, 17811 (1994); S. Goedecker and L. Colombo, Phys. Rev. Lett. 73, 122 (1994).Google Scholar
16. Kim, J., Mauri, F., and Galli, G., Phys. Rev. B 52, 1640 (1995).Google Scholar
17. Hernandez, E. and Gillan, M. J., Phys. Rev. B 51, 10157 (1995); E. Hernandez, C. M. Goringe, and M. J. Gillan, preprint (1995).Google Scholar
18. White, S. R., Wilkins, J. W., and Teter, M. P., Phys. Rev. B 39, 5819 (1989).Google Scholar
19. Chelikowsky, J. R., Troullier, N., and Saad, Y., Phys. Rev. Lett. 72, 1240 (1994); J. R. Chelikowsky, N. Troullier, K. Wu, and Y. Saad, Phys. Rev. B 50, 11355 (1994); X. Jing, N. Troullier, D. Dean, N. Binggeli, J. R. Chelikowsky, K. Wu, and Y. Saad, 50, 12234 (1994).Google Scholar
20. Briggs, E. L., Sullivan, D. J., and Bernholc, J., Phys. Rev. B 52, R5471 (1995).Google Scholar
21. Gygi, F. and Galli, G., Phys. Rev. B 52, R2229 (1995).Google Scholar
22. Zumbach, G., Modine, N. A., and Kaxiras, E., preprint (1995).Google Scholar
23. Cho, K., Arias, T. A., Joannopoulos, J. D., and Lam, P. K., Phys. Rev. Lett. 71, 1808 (1993).Google Scholar
24. Wei, S. and Chou, M. Y., preprint (1995).Google Scholar
25. Bylaska, E. J., Kohn, S. R., Baden, S. B., Edelman, A., Kawai, R., Elizabeth, M., Ong, G., and Weare, J. H., presented at the Sixth SIAM Conference on Parallel Processing for Scientific Computing, San Fransisco (1995).Google Scholar
26. Iyer, K. A., Merrick, M. P., and Beck, T. L. J. Chem. Phys. 103, 227 (1995); T. L. Beck, K. A. Iyer, and M. P. Merrick, Proc. Sixth International Conference on Density Functional Theory, Paris (1995).Google Scholar
27. Hamann, D. R., Phys. Rev. B 40, 2980 (1989).Google Scholar
28. Collatz, L., The Numerical Treatment of Differential Equations, (Springer-Verlag, Berlin, 1960), p. 164.Google Scholar
29. To be precise, the LDA exchange-correlation potential is not represented exactly in a plane-wave basis because it is a non-linear function of the density. However, its contribution to the high-frequency variation is small.Google Scholar
30. We assume that the electronic charge density is expanded with an energy cutoff twice as large as that of the wavefunctions.Google Scholar
31. Briggs, W. L., A Multigrid Tutorial, (SIAM Books, Philadelphia, 1987).Google Scholar
32. Kleinman, L. and Bylander, D. M., Phys. Rev. Lett. 48, 1425 (1982).Google Scholar
33. Needels, M., Joannopoulos, J. D., Bar-Yam, Y., and Pantelides, S. T., Phys. Rev. B 43, 4208 (1991).Google Scholar
34. Hellmann, H., Einfiihrung in die Quantenchemie, (Deuticke, Leipzig, 1937); R. P. Feynman, Phys. Rev. 56, 340 (1939).Google Scholar
35. Pulay, P., Mol. Phys. 17, 197 (1969).Google Scholar
36. Fiorentini, V., Methfessel, M., Scheffler, M., Phys. Rev. B 47, 13353 (1993).Google Scholar
37. Wright, A. F. and Nelson, J. S., Phys. Rev. B 50, 2159 (1994).Google Scholar
38. Boguslawski, P., Briggs, E. L., and Bernholc, J., Phys. Rev. B 51, 17255 (1995).Google Scholar
39. Lillenthal-Weber, Z., presented at the 1995 MRS Fall Meeting, Boston, MA (1995).Google Scholar
40. Tersoff, J., Phys. Rev. Lett. 56, 632 (1986); Phys. Rev. Lett. 61, 2879 (1988); Phys. Rev. B 37 6991 (1988); D. W. Brenner, Phys. Rev. B 42, 9458 (1990).Google Scholar
41. Zhang, Q.-M., Yi, J.-Y., and Bernholc, J., Phys. Rev. Lett. 66, 2633 (1991).Google Scholar
42. Becke, A. D., J. Chem. Phys. 96, 2155 (1992); J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).Google Scholar