Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T02:55:13.321Z Has data issue: false hasContentIssue false

Electronic and Chemical Analysis of a Metal-Insulator Interface Utilizing Transmission Electron Energy Loss Spectroscopy at 5Å Spatial Resolution

Published online by Cambridge University Press:  25 February 2011

Michael Scheinfein
Affiliation:
School of Applied and Engineering Physics and National Research and Resource Facility for Submicron Structures, Cornell University, Ithaca, New York 14853
Michael Isaacson
Affiliation:
School of Applied and Engineering Physics and National Research and Resource Facility for Submicron Structures, Cornell University, Ithaca, New York 14853
Get access

Abstract

Using a 0.5 nm diameter probe of 100 keV electrons, we have been able to detect significant changes in the transmission electron energy loss spectra in the region of valence shell and L23 shell excitation within a spatial extent of 0.4 nm of an Al-AlF3 interface. The spectra have been recorded with a dose significantly less than the critical dose for destruction of the AlF3.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Muray, A., Isaacson, M., and Adesida, I, Appl. Phys. Lett. 45, 589 (1984).10.1063/1.95292Google Scholar
2. Muray, A., Scheinfein, M., Adesida, I. and Isaacson, M., J. Vac. Sci. Technol. B, (in press).Google Scholar
3. Muray, A., Ph. D. dissertation, Cornell University (1984).Google Scholar
4. Isaacson, M., Ultramicroscopy 7, 55 (1981).10.1016/0304-3991(81)90023-1Google Scholar
5. Bourret, A. and Colliex, C., Ultramicroscopy, 9, 183 (1982).10.1016/0304-3991(82)90198-XCrossRefGoogle Scholar
6. Isaacson, M. and Muray, A., J.Vac Sci. Tech. B.Google Scholar
7. Isaacson, M. and Scheinfein, M., J.Vac. Sci Tech. B1, 1338 (1983).10.1116/1.582742Google Scholar
8. Scheinfein, M. and Isaacson, M., SEM 1984/IV, (in press).Google Scholar
9. Scheinfein, M., Muray, A. and Isaacson, M., Ultramicroscopy (1985) in press.Google Scholar
10. Economou, E.N., Phy. Rev. 182, 539 (1969).10.1103/PhysRev.182.539Google Scholar
11. Chase, J.B. and Kliewer, K.L., Phy. Rev. B2, 4389 (1970)10.1103/PhysRevB.2.4389Google Scholar
12. Richter, M. and Geiger, J. Z. Physik. B42, 39 (1981).10.1007/BF01298290Google Scholar
13. Batson, P.E, Ultramicroscopy 11, 299 (1983).10.1016/0304-3991(83)90009-8Google Scholar
14. Raether, H., Springer Tracts in Modern Physics. Vol.88, (Springer-Verlag, Berlin, 1980).Google Scholar
15. Bartlett, R.J., Olson, C.G., Lynch, D.W., Phys. Stat. Sol. (b) 107, 93 (1981).10.1002/pssb.2221070108Google Scholar
16. Codling, K., Madden, R.P., Ph s. Rev. 167(3), 587 (1968).10.1103/PhysRev.167.587Google Scholar
17. Zeitler, E., Ultramicroscopy 10, 155 (1982).10.1016/0304-3991(82)90195-4Google Scholar
18. Shuman, H., Ultramicroscopy 6, 163 (1981).10.1016/0304-3991(81)90056-5Google Scholar
19. Johnson, D., Monson, K.L., Csillag, S., Stern, E.A.: in Analytical Electron Microscopy, R., Geiss (ed.), San Francisco Press, 205 (1981).Google Scholar