Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T04:57:01.235Z Has data issue: false hasContentIssue false

Electron Beam Pumping in Nitride Vertical Cavities with GaN/ Al0.25 Ga0.75 N Bragg Reflectors

Published online by Cambridge University Press:  03 September 2012

H. Klausing
Affiliation:
Laboratorium für Informationstechnologie, Universität Hannover, 30167 Hannover, Germany
J. Aderhold
Affiliation:
Laboratorium für Informationstechnologie, Universität Hannover, 30167 Hannover, Germany
F. Fedler
Affiliation:
Laboratorium für Informationstechnologie, Universität Hannover, 30167 Hannover, Germany
D. Mistele
Affiliation:
Laboratorium für Informationstechnologie, Universität Hannover, 30167 Hannover, Germany
J. Stemmer
Affiliation:
Laboratorium für Informationstechnologie, Universität Hannover, 30167 Hannover, Germany
O. Semchinova
Affiliation:
Laboratorium für Informationstechnologie, Universität Hannover, 30167 Hannover, Germany
J. Graul
Affiliation:
Laboratorium für Informationstechnologie, Universität Hannover, 30167 Hannover, Germany
J. Dänhardt
Affiliation:
Fraunhofer Institut für Elektronenstrahl- und Plasmatechnik, 01277 Dresden, Germany
S. Panzer
Affiliation:
Fraunhofer Institut für Elektronenstrahl- und Plasmatechnik, 01277 Dresden, Germany
Get access

Abstract

Electron beam pumped surface emitting lasers are of great interest for a variety of applications, such as Laser Cathode Ray Tubes (LCRT) in projection display technology or high power UV light sources for photolithography.

Two distributed Bragg reflector (DBR) samples were grown by plasma assisted molecular beam epitaxy (PAMBE). The active regions of the samples are a GaN:Si bulk layer and a multihetero (MH) structure, respectively.

Also, a separately grown single DBR stack was studied to find optical transmission and reflection properties which were compared to transfer matrix simulations.

Scanning electron beam pumping at 80 K with an excitation energy of 40 keV at varying beam currents revealed luminescence emission maxima located at about 3.45 eV for the sample with the MH structure active region. Optical modes appeared for excitation powers greater than 0.85 MW/ cm2. Further increasing the excitation power density the number of modes increased and a broadening and redshift of the luminescence spectrum could be observed.

Based on our experimental results, we discuss the dependence of optical parameters of the nitride vertical cavity and sample surface reactions on primary electron beam power.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Someya, T. and Arakawa, Y., Jpn. J. Appl. Phys. 37, L 14241426, (1998).Google Scholar
2. Redwing, J. and Flynn, J., Appl. Phys. Lett. 69(1), 1, (1996).Google Scholar
3. Anderson, N., Redwing, J. M., Flynn, S., Jpn. J. Appl. Phys. 38, 47944795, (1999).Google Scholar
4. Song, Y.-K. and Carter-Coman, C., Appl. Phys. Lett. 74(23), 3441, (1999).Google Scholar
5. Krestnikov, I. L. and Ledentsov, N. N., Appl. Phys. Lett. 75(9), 1192, (1999).Google Scholar
6. Ng, H. and Moustakas, T., Appl. Phys. Lett. 74(7), 1036, (1999).Google Scholar
7. Khan, M. and Olsen, D., Appl. Phys. Lett. 59(12), 1449, (1991).Google Scholar
8. Langer, R. and Dang, L., Appl. Phys. Lett. 74(24), 3610, (1999).Google Scholar
9. Someya, T. and Arakawa, Y., Appl. Phys. Lett. 73(25), 3653, (1998).Google Scholar
10. Nathan, M. I., Phys. Rev. Lett. 11(4), 152154, (1963).Google Scholar
11. Bogdankevich, O., Sov. J. Quantum Electron. 24(12), 10311053, (1994).Google Scholar
12. , Binet and Briot, O., Mat. Sc. & Eng. B50, 183187, (1997).Google Scholar
13. , Nasibov and Shemchuk, E., Sov. J. Quantum Electron. 8(9), 10821085 (1978).Google Scholar
14. Singh, J., Semiconductor Optoelectronics, McGraw-Hill, New York (1995).Google Scholar
15. Schiller, S., Heisig, U., and Panzer, S., Elektronenstrahltechnologie, Wissenschaftl. Verlagsgesellschaft mbH, Stuttgart, 1977.Google Scholar
16. , Khurgin and Davids, D. A., Optical and Quantum Electronics 25, 451465 (1993).Google Scholar
17. Holst, J.-Chr. and Hoffmann, A., MRS Internet J. Nitride Semicond. Res. 2, Art. 25 (1997).Google Scholar