No CrossRef data available.
Published online by Cambridge University Press: 28 February 2011
We report how vacuum annealing and dry oxidation affect the photoluminescence (PL) properties of porous Si. Vacuum annealing weakens the intensity of as-prepared porous Si, whereas, oxidation using dry oxygen at 5 Torr increases the intensity remarkably above 800 °c. Blue shifts as large as 100 nm are also observed for temperatures between 800 °C and 1000 °c. The photoluminescence decay patterns of both as-prepared and dry-oxidized porous Si excited by a nitrogen laser pulse are not exponential, but are fitted well by two exponential decays with lifetimes ranging from a few nanoseconds to over 100 nanoseconds. Further, those decay patterns do not change with changing excitation power by more than three orders of magnitude. These studies suggest that (l) hydrogen termination (with some fluorine termination) on the porous Si surface is not always necessary to get photoluminescence, (2) low surface defect densities are essential to increase the photoluminescence intensity, and (3) the radiative recombination path is not a direct interband transition, but, due to quantum size effects, it may go through some luminescence centers lying In the widened band gap.