Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T02:54:05.606Z Has data issue: false hasContentIssue false

Effects of Interface Roughness and Embedded Nanostructures on Device Properties

Published online by Cambridge University Press:  10 February 2011

D. Z.-Y. Ting
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
T. C. Mcgill
Affiliation:
Dept. of Applied Physics, California Institute of Technology, Pasadena, CA 91125
N. Y. Chen
Affiliation:
Dept. of Physics, National Tsing Hua University, Hsinchu, Taiwan 30043
J. N. Wang
Affiliation:
Dept. of Physics, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong
R. G. Li
Affiliation:
Dept. of Physics, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong
Y. Q. Wang
Affiliation:
Dept. of Physics, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong
W. K. Ge
Affiliation:
Dept. of Physics, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong
J. N. Schulman
Affiliation:
HRL Laboratories, LLC, Malibu, CA 90265
Get access

Abstract

We give an overview of the open-boundary planar supercell stack method (OPSSM), as a means for treating 3D quantum transport in mesoscopic tunnel structures. The flexibility of the method allows us to examine a variety of physical phenomena relevant to quantum transport. In this work we focus on the effects of interface roughness and embedded nanostructures in tunnel devices. Four representative applications of OPSSM are discussed: (1) interface roughness in double barrier resonant tunneling structures, (2) self-organized InAs quantum dot insertions in GaAs/AlAs double barrier structures, (3) tunneling characteristics of ultra-thin oxides with interface roughness, and, (4) embedded quantum wire model of dielectric breakdown. These examples demonstrate scattering and localization effects under different biasing conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Tsu, R. and Esaki, L., Appl. Phys. Lett. 22, 562 (1973).Google Scholar
[2]Kirby, S. K., Ting, D. Z.-Y., and McGill, T. C., Phys. Rev. B, 48(20), 15237 (1993).Google Scholar
[3]Ting, D. Z.-Y., Kirby, S.K., and McGill, T.C., Appl. Phys. Lett., 64(15), 2004 (1994).Google Scholar
[4]Ting, D.Z.-Y. and McGill, T.C., J. Vac. Sci. Technol. B14(4), 2790 (1996).Google Scholar
[5]Kirby, S. K., Ting, D. Z.-Y, and McGill, T. C., Semicond. Sci. Tech. 9(5) Suppl. S, 918 (1994).Google Scholar
[6]Wang, J.N., Li, R.G., Wang, Y.Q., Ge, W.K., Ting, D. Z.-Y., Microelectron Eng 43–4 1998, 341–.Google Scholar
[7]Ting, D.Z.-Y, Appl Phys. Lett. 73(19), 2769 (1998).Google Scholar
[8]Ting, D. Z.-Y., Appl. Phys. Lett. 74(4), 585 (1999).Google Scholar
[9]Ting, D. Z.-Y., Kirby, S. K., and McGill, T. C., J. Vac. Sci. Technol. B 11(4), 1738 (1993)Google Scholar
[10]BenDaniel, D. J. and Duke, C. B., Phys. Rev., 152, 683 (1966).Google Scholar
[11] D.Z.-Y Ting, Yu, E.T., and McGill, T.C., Phys. Rev. B, 45(7), 3583 (1992)Google Scholar
[12]Freund, R.W. and Nachtigal, N.M., Numer Math., 60(3), 315 (1991).Google Scholar
[13]Chen, N.Y., Three-dimensional supercell simulations of quantum transport in a magnetic field, Master degree thesis, National Tsing Hua University, Hsinchu, Taiwan, 1998.Google Scholar
[14]Metropolis, N., Rosenbluth, A., Rosenbluth, M.N., Teller, A., and Teller, E., J. Chem. Phys., 21, 1087 (1953).Google Scholar
[15]Cundiff, S. T. et al., Appl. Phys. Lett. 70, 1414(1997).Google Scholar
[16]Sugino, R., Nakanishi, T., Takasaki, K., and Ito, T., J. Electrochem. Soc. 143, 2691 (1996).Google Scholar