Published online by Cambridge University Press: 26 February 2011
The effect of implant temperature, superlattice period, and directional diffusion has been studied for silicon impurity-enhanced compositional disordering of GaAs-AlAs superlattices (SL) of 9 ran and 16 nm period. The SL were implanted with Si at temperatures of 483 K, 293 K, and 77 K, with an energy of 100 keV and dose of 2.5 × 1014 cm-2. These were examined by cross-sectional transmission electron microscopy and secondary ion mass spectro-scopy for structural and compositional information. The damage due to implantation prior to annealing is strikingly less for superlattices than for bulk GaAs. All annealed samples exhibited disordering, with the 9 nm period SL exhibiting a deeper disordered region than the 16 nm SL. The greatest enhancement was found in the 9 nm period SL implanted at 77 K, in which the disordering extended from a depth of 25 nm to =300 nm. The mixing was found to be anisotropie, with the SL mixing propagating greater in depth than in the lateral directions. The result has important implications for high resolution patterning possibilities with this method.