Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-16T03:25:31.994Z Has data issue: false hasContentIssue false

The Effect of Si Additions on the Epitaxial Growth of Gel−x Cx Alloys on Si(100)

Published online by Cambridge University Press:  15 February 2011

Bi-Ke Yang
Affiliation:
Department of Metallurgical and Materials Engineering, Michigan Technological University, Houghton, MI, 49931
J. D. Weil
Affiliation:
Department of Metallurgical and Materials Engineering, Michigan Technological University, Houghton, MI, 49931
M. Krishnamurthy
Affiliation:
Department of Metallurgical and Materials Engineering, Michigan Technological University, Houghton, MI, 49931
Get access

Abstract

We report on the differences in the epitaxial growth mechanisms between Ge1−xCx (O<x<0.1) and Ge1−x−ySixCy (x=0.2, 0<y<0.05) alloys grown on Si(100) using low temperature( 200°C) molecular beam epitaxy. Thin films (50˜65nm) were characterized in situ by RHEED and ex situ by transmission electron microscopy and x-ray diffraction. With increasing C concentration, the microstructure of both Ge and GeSi alloys changes from 2D layer growth to 3D islanding. The d400 spacing of the relaxed alloys decreases marginally, with a maximum of 1at.% C being substitutionally incorporated. Ge-C films with higher C content have a high density of planar defects, typically twins and stacking faults. The addition of 20% Si does not appear to increase the amount of substitutional C in the films. Rather, the additions of 20% Si to Ge-C alloys somehow seems to enhance the tendency for the formation of planar defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bean, J. C., Proc. IEEE 80, 571 (1992).Google Scholar
2. Soref, R. A., Proc. IEEE 81, 1687 (1993).Google Scholar
3. Powell, A. R., LeGoues, F. K. and Iyer, S. S., Appl. Phys. Lett. 64, 324 (1994)Google Scholar
4. Osten, H. J. and Klatt, J., Appl. Phys. Lett. 65, 630 (1994).Google Scholar
5. Osten, H. J., Bugiel, E. and Zaumseil, P., J. Cryst. Growth 142, 322 (1994).Google Scholar
6. Kolodzy, J., O'Neil, P. A., Zhang, S., Orner, B. A., Roe, K., Unruh, K. M., Swann, C. P., Waite, M. M. and Shah, S. Ismat, Appl. Phys. Lett. 67, 865 (1995),Google Scholar
7. Masayuki, Hiroi and Toru, Tatsumi, J. Cryst. Growth 150, 1005 (1995).Google Scholar
8. Powell, A. R., Eberl, K., Ek, B. A. and Iyer, S. S., J. Cryst. Growth 127, 425 (1993)Google Scholar
9. Regoloni, J. L., Bodnar, S., Oberlin, J. C., Ferrieu, F., Gauneau, M., Lambert, B. and Boucaud, P., J. Vac. Sci. Technol. A 12, 1015 (1994)Google Scholar
10. Krishnamurthy, M., Drucker, J. S. and Challa, A., J. Appl. Phys. 78, 7070 (1995)Google Scholar
11. Krishnamurthy, M., Yang, Bi-Ke and Weber, W. H., Appl. Phys. Letter. 69, 2572 (1996).Google Scholar
12. Chadi, D. J., Phys. Rev. B 29, 785 (1984).Google Scholar
13. Bird, D. M., Clarke, L. J., King-Smith, R. D., Payne, M. C., Stich, I. and Sutton, A. P., Phys. Rev. Lett. 69, 3785 (1992)Google Scholar