Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T05:47:58.328Z Has data issue: false hasContentIssue false

Effect of Remote Hydrogen Plasma Treatment on ZnO Single Crystal Surfaces

Published online by Cambridge University Press:  11 February 2011

Yuri M. Strzhemechny
Affiliation:
Center for Materials Research, The Ohio State University, Columbus, OH 43210, U.S.A.
John Nemergut
Affiliation:
Department of Electrical Engineering, The Ohio State University, Columbus, OH 43210, U.S.A.
Junjik Bae
Affiliation:
Department of Physics, The Ohio State University, Columbus, OH 43210, U.S.A.
David C. Look
Affiliation:
Semiconductor Research Center, Wright State University, Dayton, OH 45435, U.S.A.
Leonard J. Brillson
Affiliation:
Department of Electrical Engineering, Department of Physics, and Center for Materials Research, The Ohio State University, Columbus, OH 43210, U.S.A.
Get access

Abstract

We have studied the effects of hydrogen plasma treatment on the defect characteristics in single crystal ZnO grown at Eagle-Picher by chemical vapor transport. Depth-dependent cathodoluminescence (CL) spectra, temperature-dependent (9–300 K) and excitation intensity-dependent photoluminescence (PL) spectra reveal significant changes resulting from unannealed exposure of n-type ZnO to a remote hydrogen plasma. Low temperature PL spectra show that this hydrogen exposure effectively suppresses the free-exciton transition and redistributes intensities in the bound-exciton line set and two-electron satellites with their phonon replicas. The resultant spectra after hydrogenation exhibit a new peak feature at 3.366 eV possibly related to a neutral donor bound exciton. A simple thermal analysis of the activation energy for the 3.366 eV line yields 5–10 meV. Hydrogenation also produces a violet 100 meV-wide peak centered at 3.16 eV. Remote plasma hydrogenation produces similar changes in room-temperature CL spectra: near-band edge emission intensity increases with hydrogenation. Furthermore, this new emission increases with proximity to the free ZnO surfaces, i.e., with decreasing the energy of the incident electron beam from 3.0 down to 0.5 keV. Subsequent annealing at 450 °C completely restores both the PL and CL spectra in the sub-band gap range. The appearance of a new bound-exciton feature at 3.366 eV with H plasma exposure, the near-surface nature of the spectral changes, and the reversibility of spectral features with annealing indicate a direct link between H indiffusion and appearance of a shallow donor.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kohiki, S., Nishitani, M., Wada, T., and Hirao, T., Appl. Phys. Lett. 64, 2876 (1994).Google Scholar
2. Baik, S. J., Jang, J. H., Lee, C. H., Cho, W. Y., and Lim, K. S., Appl. Phys. Lett. 70, 3516 (1997).Google Scholar
3. Theys, B., Sallet, V., Jomard, F., Lusson, A., Rommeluere, J.-F., and Teukam, Z., J. Appl. Phys. 91, 3922 (2002).Google Scholar
4. Sekiguchi, T., Ohashi, N., and Terada, Y., Jpn. J. Appl. Phys. 36, L289 (1997).Google Scholar
5. Sekiguchi, T., Ohashi, N., and Yamane, H., Solid State Phenomena 63–64, 171 (1998).Google Scholar
6. Ohashi, N., Ishigaki, T., Okada, N., Sekiguchi, T., Sakaguchi, I., and Haneda, H., Appl. Phys. Lett. 80, 2869 (2002).Google Scholar
7. Lee, J.-M., Kim, K.-K., Park, S.-J., and Choi, W.-K., Appl. Phys. Lett. 78, 3842 (2001).Google Scholar
8. Minegishi, K., Koiwai, Y., Kikuchi, Y., Yano, K., Kasuga, M., and Shimizu, A., Jpn. J. Appl. Phys. 36, L1453 (1997).Google Scholar
9. Van de Walle, C. G., Phys. Rev. Lett. 85, 1012 (2000).Google Scholar
10. Van de Walle, C. G., Physica B 308–310, 899 (2001).Google Scholar
11. Thonke, K., Gruber, Th., Teofilov, N., Schonfelder, R., Waag, A., and Sauer, R., Physica B 308–310, 945 (2001).Google Scholar
12. Look, D. C., Reynolds, D. C., Sizelove, J. R., Jones, R. L., Litton, C. W., Cantwell, G., and Harsch, W. C., Solid State Commun. 105, 399 (1998).Google Scholar
13. Look, D. C., Hemsky, J. W., and Sizelove, J. R., Phys. Rev. Lett. 82, 2552 (1999).Google Scholar
14. Look, D. C., Materials Science and Engineering B80, 383 (2001).Google Scholar
15. Hofmann, D. M., Hofstaetter, A., Leiter, F., Zhou, H., Henecker, F., Meyer, B. K., Orlinskii, S. B., Schmidt, J., and Baranov, P. G., Phys. Rev. Lett. 88, art. no.-045504 (2002).Google Scholar
16. Brillson, L. J., Richter, H. W., Slade, M. L., Weinstein, B. A., and Shapira, Y., J. Vac. Sci. Technol. A 13, 1924 (1995).Google Scholar