Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T03:59:19.816Z Has data issue: false hasContentIssue false

Effect of Crosslinking on the Elastic Properties of the Cytoskeleton: A 3D Discrete Modeling Approach

Published online by Cambridge University Press:  26 February 2011

Florent Dalmas
Affiliation:
[email protected], Laboratoire de Recherche sur les Polymères, CNRS-UMR 7581, 2-8 rue Henri Dunant, Thiais, 94320, France, (33) 1 49 78 13 07, (33) 1 49 78 12 08
Camilla Mohrdieck
Affiliation:
[email protected], Universitaet Stuttgart, Inst. of Physical Metallurgy, Heisenbergstrasse 3, Stuttgart, 70569, Germany
Get access

Abstract

In living eukaryotic cells a crosslinked network of polymer fibers, the cytoskeleton, endows the cells with structural integrity and mechanical stability and flexibility. To understand the mechanisms that are at the base of these functions, it is important to know in what way the microstructure and the mechanical behavior of the cytoskeleton change as a function of the type and the density of crosslinking molecules. To address this issue, we have developed a new modeling approach based on the discretization of polymeric fibers that are modeled as homogeneous straight beams in a constant volume. Crosslinks between adjacent fibers are taken into account by creating additional beams between the fibers if their spacing is smaller than a meaningful upper bound. By varying their geometrical and mechanical properties, the influence of the crosslinks on the shear modulus of the network can be studied systematically. Our simulations predict interesting new scaling behaviors that depend on the degree of crosslinking.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bausch, A. R. and Kroy, K., Nat. Phys. 2, 231 (2006).Google Scholar
2. Goff, L. Le, Hallatschek, O., Frey, E. and Amblard, F., Phys. Rev. Lett. 89, 258101 (2002).Google Scholar
3. Tseng, Y., Schafer, B. W., Almo, S. C. and Wirtz, D., J. Biol. Chem 277, 25609 (2002).Google Scholar
4. Gardel, M. L., Nakamura, F., Hartwig, J. H., Crocker, J. C., Stossel, P. T. and Weitz, D. A., PNAS 103, 1762 (2006).Google Scholar
5. Rief, M., Fernandez, J. M. and Gaub, H. E., Phys. Rev. Lett. 81, 4764 (1998).Google Scholar
6. Yamazaki, M., Furuike, S., Ito, T., J. Muscle Res. Cell Motil. 23, 525 (2002).Google Scholar
7. Tempel, M., Isenberg, G. and Sackmann, E., Phys. Rev. E 54, 1802 (1996).Google Scholar
8. Gardel, M. L., Shin, J. H., MacKintosh, F. C., Mahadevan, L., Matsudaira, P. and Weitz, D. A., Science 304, 1301 (2004).Google Scholar
9. MacKintosh, F. C., Käs, J. and Janmey, P. A., Phys. Rev. Lett. 75, 4425 (1995).Google Scholar
10. Gardel, M. L., Shin, J. H., MacKintosh, F. C., Mahadevan, L., Matsudaira, P. A. and Weitz, D. A., Phys. Rev. Lett. 93, 188102 (2004).Google Scholar
11. Tharmann, R., Claessens, M. M. A. E. and Bausch, A. R., Biophys. J. 90, 2622 (2006).Google Scholar