Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T02:54:15.248Z Has data issue: false hasContentIssue false

Dynamic Simulation of Crack Propagation with Dislocation Emission and Migration

Published online by Cambridge University Press:  10 February 2011

N. Zacharopoulos
Affiliation:
Department of Materials Science and Engineering, University of Michigan, ann Arbor, MI 48109-2136, [email protected], [email protected]
D. J. Rolovitz
Affiliation:
Department of Materials Science and Engineering, University of Michigan, ann Arbor, MI 48109-2136, [email protected], [email protected]
R. A. Lesar
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545. [email protected]
Get access

Abstract

We present a simulation procedure for fracture that self-consistently accounts for dislocation emission, dislocation migration and crack growth. We find that the dislocation microstructure in front of the crack tip is highly organized and shows a complex temporal-spatial evolution. The final dislocation microstructure and the number of emitted dislocations immediately proceeding fracture varies rapidly with the loading rate. For high loading rates, fracture occurs at smaller loads with increasing loading rate. However, the load at fracture shows a maximum with respect to loading rates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Rice, J.R. and Thomson, R., Phil. Mag. 29, 73 (1974).Google Scholar
2. Thomson, R. and Sinclair, J., Acta Metall. 30, 1325 (1982).Google Scholar
3. Weertman, J., Acta Metall. 26, 1731 (1978); J. Mater. Sci. 15, 1306 (1980).Google Scholar
4. Majumdar, B. and Bums, S., Acta Metall. 29, 579 (1981); Int. J. Fract. Mach. 21, 229 (1983).Google Scholar
5. Chang, S. and Ohr, S.M., J. Appl. Phys. 52, 7174 (1981).Google Scholar
6. Ohr, S.M. and Chang, S., J. Appl. Phys. 53, 5645 (1982).Google Scholar
7. Weertman, J., Lin, I.-H., Thomson, R., Acta Metall. 31, 473 (1983).Google Scholar
8. Hart, E.W., Int. J. Solids Struct. 16, 807 (1980).Google Scholar
9. Anderson, P.M. and Li, C. in Thin Films: Stresses and Mechanical Properties IV, edited by Townsend, P.H., Weihs, T.P., Sanchez, J.E. Jr., Børgesen, P. (Mater. Res. Soc. Proc. 308, Pittsburgh, PA 1993), p. 731736.Google Scholar
10. Ohr, S.M. and Narayan, J., Phil. Mag. A 41, 81 (1980).Google Scholar
11. Kobayashi, S. and Ohr, S.M., Phil. Mag. A 42, 763 (1980); Scripta Metall. 15, 343 (1981); J. Mater. Sci. 19, 2273 (1984).Google Scholar
12. Horton, J.A. and Ohr, S.M., Scripta Metall. 16, 621 (1982); J. Mater. Sci. 17, 3140 (1982).Google Scholar
13. Lepinoux, J. and Kubin, L.P., Scripta Metall. 21, 833 (1987).Google Scholar
14. Gulluoglou, A.N., Srolovitz, D.J., LeSar, R., and Lomdahl, P.S., Scripta Metall. 23, 1347 (1989); in Simulation and Theory of Evolving Microstructures, edited by M.P. Anderson and A.D. Rollet (The Minerals, Metals & MaterialsSociety 1990), p 239–247.Google Scholar
15. Amodeo, R.J. and Ghoniem, N.M., Phys. Rev. B 41, 6958 (1990); in Modeling the Deformation of Crystalline Solids, edited by T.C. Lowe, A.D. Rollet, P.S. Follansbee and G.S. Daehn (The Minerals, Metals & Materials Society 1991), p. 125–143.Google Scholar
16. Wang, H.Y. and LeSar, R, Phil. Mag. A 71, 149 (1995).Google Scholar
17. Barts, D.B. and Carlsson, A.E., Phys. Rev. B 52, 2195 (1995).Google Scholar
18. Rokhlin, L. Greengard and V., J. Comp. Phys. 73, 325 (1987).Google Scholar