Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-03T00:59:57.734Z Has data issue: false hasContentIssue false

Doping of GaN by Ion Implantation: Does it Work?

Published online by Cambridge University Press:  10 February 2011

A. Suvkhanov
Affiliation:
Department of physics & Astronomy, University of North Carolina, Chapel Hill, NC 27599
J. Hunn
Affiliation:
Metals and Seramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6376
W. Wu
Affiliation:
Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599
D. Thomson
Affiliation:
Department of Materials Science & Engineering, NC State University, Raleigh, NC 27695
K. Price
Affiliation:
Department of physics & Astronomy, University of North Carolina, Chapel Hill, NC 27599
N. Parikh
Affiliation:
Department of physics & Astronomy, University of North Carolina, Chapel Hill, NC 27599
E. Irene
Affiliation:
Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599
R. F. Davis
Affiliation:
Department of Materials Science & Engineering, NC State University, Raleigh, NC 27695
L. Krasnobaev
Affiliation:
Implant Centre, San-Jose, CA 95131
Get access

Abstract

Epitaxially grown GaN by metal organic chemical vapor deposition (MOCVD) on SiC were implanted with 100 keV Si+ (for n-type) and 80 keV Mg+ (for p-type) with various fluences from 1×1012 to 7×1015 ions/cm2 at liquid nitrogen temperature (LT), room temperature (RT), and 700 °C (HT). High temperature (1200 °C and 1500 °C) annealing was carried out after capping the GaN with epitaxial AIN by MOCVD to study damage recovery. Samples were capped by a layer of AIN in order to protect the GaN surface during annealing. Effects of implant temperature, damage and dopant activation are critically studied to evaluate a role of ion implantation in doping of GaN. The damage was studied by Rutherford Backscattering/Channeling, spectroscopic ellipsometry and photoluminescence. Results show dependence of radiation damage level on temperature of the substrate during implantation: implantations at elevated temperatures up to 550 °C decrease the lattice disorder; “hot implants” above 550 °C can not be useful in doping of GaN due to nitrogen loss from the surface. SE measurements have indicated very high sensitivity to the implantation damage. PL measurements at LT of 80 keV Mg+ (5×1014 cm-2) implanted and annealed GaN showed two peaks : one ∼100 meV and another ∼140 meV away from the band edge.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sakai, H., Koide, T., Suzuki, H., Yamaguchi, M., Yamasaki, S., Koike, M., Amano, H. and Akasaki, I., Jpn. J. Appl.., 34, L1429 (1995).Google Scholar
2. Nakamura, S., Senoh, M., Iwasa, N. and Nagahama, S., (1995) Appl. Phys. Lett., 67, 1868 (1995).Google Scholar
3. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H. and Sugimoto, Y., Jpn. J. Appl. Phys., 35, L74 (1996).Google Scholar
4. Razeghi, M. and Rogalski, A., J. Appl. Phys., 79, 7433 (1996).Google Scholar
5. Khan, M. A., Shur, M. S., Kuznia, J. N., Chen, Q.. Burm, J. and Schaff, W., Appl. Phys. Lett., 66, 1083 (1995).Google Scholar
6. Goldenberg, B., Zook, J. D. and Ulmer, R. J., Appl. Phys. Lett., 62, 381 (1993).Google Scholar
7. Abernathy, C. R., Mackenzie, J. D., Pearton, S. J. and Hobson, W. S., Appl. Phys. Lett., 66, 1969 (1995).Google Scholar
8. Kaplan, R., Prokes, S. M., Binari, S. C. and Kelner, G., Appl. Phys. Lett., 68, 3248 (1996).Google Scholar
9. Wongchotigul, K., Chen, N., Zhang, D. P., Tang, X. and Spencer, M. G., Mater. Letter, 26, 223 (1996).Google Scholar
10. Tan, H. H., Williams, J. S., Yuan, C. and Pearton, S. J., MRS Symp. Proc. Vol.395, 807 (1996).Google Scholar
11. Zolper, J. C., J.Of Crystal Growth, 178, 157 (1997).Google Scholar
12. Akasaki, I., Amano, H., Kito, M. and Hiromatsu, K., J. Lumin., 48/49, 666 (1991).Google Scholar
13. Gotz, W., Johnson, N. M., Chen, C., Liu, H., Kuo, C. and Imler, W., Appl. Phys. Lett., 68, 22 (1996).Google Scholar
14. Kim, J. C., Frenkel, A. C., Liu, H. and Park, R. M., Appl. Phys. Lett., 65, 91 (1994).Google Scholar
15. Weeks, T. W. Jr., Bremser, M. D., Alley, K. S., Carlson, E., Perry, W. G. and Davis, R. F., Appl. Phys. Lett. 67 (1995) 401.Google Scholar
16. Zeigler, J. F., Biersak, J. P. and Littmark, U., in :The Stopping and Range of Ions in Matter, Vol.1 (Pergamon, New York, 1985).Google Scholar
17. Parikh, N., Suvkhanov, A., Lioubtchenko, M., Carlson, E., Bremser, M., Bray, D., Davis, R. and Hunn, J., Nucl. Instr. and Meth. in Phys. Res. B 127/128 (1997) 463 Google Scholar