Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T04:41:27.174Z Has data issue: false hasContentIssue false

Disorder Induced IR Anomaly in Hexagonal AlGaN Short-Period Superlattices and Alloys

Published online by Cambridge University Press:  10 February 2011

A. M. Mintairov
Affiliation:
EE Department, University of Notre Dame, Notre Dame, IN 46556
A. S. Vlasov
Affiliation:
EE Department, University of Notre Dame, Notre Dame, IN 46556
J. L. Merz
Affiliation:
EE Department, University of Notre Dame, Notre Dame, IN 46556
D. Korakakis
Affiliation:
ECE Department, University of Boston, Boston,MA, 02215
T. D. Moustakas
Affiliation:
ECE Department, University of Boston, Boston,MA, 02215
A. O. Osinsky
Affiliation:
APA Optics. 2950 N.E. 84th Lane, Blaine, MN, 55434
R. Gaska
Affiliation:
APA Optics. 2950 N.E. 84th Lane, Blaine, MN, 55434
M. B. Smirnov
Affiliation:
Institute for Silicate Chemistry, Odoevskogo 24/2, 199155 St.Petersburg, Russia
Get access

Abstract

We report an experimental (infrared reflectance spectroscopy) and theoretical study of the polar optical phonons in hexagonal ternary nitride compounds: AlNm/GaNn (n=2-8, m=4, 8) superlattices (SL) and spontaneously ordered AlxGa1−xN (x=0.08–0.55) alloys. In infrared (IR) reflectivity spectra we revealed two modes having strong LO-TO splitting (20–150 cm−1), and several modes, having a small (1–3 cm−1) LO-TO splitting. All modes have a very high damping parameter ≥20 cm−1. The unusual observation is the negative value of the oscillator strength for the weak IR mode at ∼690 cm−1, suggesting possible lattice instability, consistent with high damping observed. We found from lattice dynamical calculations that weak IR active modes correspond to modes localized at GaN-AlN interfaces. Our analysis has shown that an anomalous mode is induced by the disorder effects and arises due to strong overlapping of the LO-TO phonon branches of the bulk GaN and AlN. In SL samples the anomalous mode corresponds to phonons localized on interface inhomogenities.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Khan, M. Asif, Kuzina, J. N., Olson, D. T., George, T., and Pike, W. T., Appl. Phys. Lett., 63, 3471, (1993)10.1063/1.110359Google Scholar
2. Korakakis, D., Ludwig, K. F. Jr, and Moustakas, T. D., Appl. Phys. Lett, 71, 72(1997).10.1063/1.119916Google Scholar
3. Kitaev, Yu. E., Limonov, M. F., Tronc, P., and Yushin, G. N., Phys. Rev. B57, (1998).10.1103/PhysRevB.57.14209Google Scholar
4. Kirk, C. T., Phys. Rev. B38, 1255, 1988 10.1103/PhysRevB.38.1255Google Scholar
5. Barker, A. S. Jrand Ilegems, M., Phys.Rev. B7, 743, 1973 10.1103/PhysRevB.7.743Google Scholar
6. Barker, A. S. Jr, Phys. Rev. 132, 1474(1963)10.1103/PhysRev.132.1474Google Scholar
7. Cardona, M., Superlattices and Microstructures, 7, 180, 1990 10.1016/0749-6036(90)90293-GGoogle Scholar
8. Daviidov, V. Yu., Kitaev, Yu. V., Goncharuk, I. N., Smirnov, A. N., Graul, J., Seminchinova, O., Uffmann, D., Smirnov, M. B., Mirgorodsky, A. P. and Evarestov, R. A., Phys. Rev. B58, 12899 1998.10.1103/PhysRevB.58.12899Google Scholar