Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T03:19:43.621Z Has data issue: false hasContentIssue false

Diffusion and Relaxation in Glasses and their Melts

Published online by Cambridge University Press:  11 February 2011

D. Caprion
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich, D-52425 Jülich, Germany
M. Kluge
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich, D-52425 Jülich, Germany
H. R. Schober
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich, D-52425 Jülich, Germany
Get access

Abstract

Results of computer simulations of diffusion and relaxation in the liquid and the glassy state are presented for model systems and Cu33Zr67 and Se. The diffusion constant and the intermediate self scattering function show the typical behavior upon quenching from the liquid to the glass. The diffusion constant in the undercooled liquid can be fitted both with a Vogel-Fulcher or a mode coupling law. However, its pressure derivative, the activation volume, clearly follows the prediction of the mode coupling theory. From the diffusional isotope effect in the liquid we conclude that collectivity increases upon quenching to the glass transition. Checking the relaxations in the glass we find collective hopping of chains of atoms as elementary process. Both in the glassy state and in the undercooled liquid we observe an increase oc ∝√ι ofthe non-Gaussianity of the self correlation function, which measures the dynamic heterogeneity. This can be understood from the collective jump mechanism.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Faupel, F. et al, Rev. Mod. Phys. 75, 237 (2003).Google Scholar
[2] Götze, W. and Sjölander, A., Rep. Prog. Phys 55, 241 (1992).Google Scholar
[3] Oligschleger, C. and Schober, H. R., Phys. Rev. 59, 811 (1999).Google Scholar
[4] Schober, H. R., Phys. Rev. Lett. 88, 145901 (2003).Google Scholar
[5] Schober, H. R., Solid State Commun. 119, 73 (2001).Google Scholar
[6] Gaukel, C., Kluge, M. and Schober, H. R., J. Non.-Cryst. Solids 250, 664 (1999).Google Scholar
[7] Caprion, D. and Schober, H. R., Phys. Rev. B 62, 3709 (2000).Google Scholar
[8] Schober, H. R., Oligschleger, C., and Laird, B.B., J. Non-Cryst. Sol. 156, 965 (1993).Google Scholar
[9] Luchnikov, V. A., Medvedev, N. N., L Naberukin, Yu. and Schober, H. R., Phys. Rev. B 62, 3181 (2000).Google Scholar
[10] Chen, S.-P, Egami, T. and Vitek, V., Phys. Rev. B 37, 2440 (1988).Google Scholar
[11] Schober, H. R., Gaukel, C., and Oligschleger, C., Prog. Theor. Phys. Suppl. 126, 67 (1997).Google Scholar
[12] Donati, C. et al, Phys. Rev. Lett. 80, 2338 (1998).Google Scholar
[13] Gaukel, C., Dynamics of Glasses and Undercooled Melts of Zr-Cw, Berichte des Forschungszentrums Jülich 3556, Jülich, Germany: 1998.Google Scholar
[14] Kluge, M., Molekulardynamik-Simulation der Diffusion in binären unterkühlten metallischen Schmelzen und Gläsern aus Cu33Zr67, Berichte des Forschungszentrums Jülich 3913, Jülich, Germany: 2001.Google Scholar
[15] Ehmler, H. et al, Phys. Rev. Lett. 80, 4919 (1998).Google Scholar
[16] Rahmann, A., Phys. Rev. 136, A405 (1964).Google Scholar
[17] Caprion, D., Matsui, J. and Schober, H. R., Phys. Rev. Lett. 85, 4293 (2000).Google Scholar