Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T15:38:02.307Z Has data issue: false hasContentIssue false

Deposition of Superconducting Tl-Ba-Ca-Cu-O Phases on Metal Foils by Metal-Organic Chemical Vapor Deposition

Published online by Cambridge University Press:  26 February 2011

D. L. Schulzi
Affiliation:
Department of Chemistry, Northwestern University, Evanston, IL, 60208–3113.
B. Hano
Affiliation:
Department of Chemistry, Northwestern University, Evanston, IL, 60208–3113.
D. Neumayer
Affiliation:
Department of Chemistry, Northwestern University, Evanston, IL, 60208–3113.
B. J. Hinds
Affiliation:
Department of Chemistry, Northwestern University, Evanston, IL, 60208–3113.
T. J. Markst
Affiliation:
Department of Chemistry, Northwestern University, Evanston, IL, 60208–3113.
D. C. Degroot
Affiliation:
Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL, 60208–3113.
J. L. Schindler
Affiliation:
Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL, 60208–3113.
T. Hogan
Affiliation:
Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL, 60208–3113.
C. R. Kannewurf
Affiliation:
Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL, 60208–3113.
Get access

Abstract

The synthesis of superconducting Tl-Ba-Ca-Cu-O thin films on metal foils (Au and Ag) by metal-organic chemical vapor deposition (MOCVD) has been investigated. Ba-Ca-Cu-O-(F) films are first prepared via MOCVD using fluorinated “second generation” metal-organic precursors. After an intermediate anneal with water vapor-saturated oxygen to promote removal of F, Tl is introduced by annealing in the presence of a mixture of oxides (Tl2O3, BaO, CaO, CuO) of a specific composition. Characterization of the thin films by scanning electron microscopy, EDX, x-ray diffraction, and variable temperature magnetization measurements has been carried out. High temperature superconductor (HTS) films of Tl2Ba2Ca1Cu2O8−x on Au foil exhibit a magnetically derived Tc = 80K and a high degree of texturing with the crystallite c-axes oriented perpendicular to the substrate surface as evidenced by enhanced (000 x-ray diffraction reflections. Thin film coverage on Ag foil becomes non-contiguous during the (Tl2O3, BaO, CaO, CuO) mixture anneal.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bednorz, J. G. and Muller, K. A., Z. Phys. B: Condens. Matter 64, 89 (1986).Google Scholar
2. Wu, M. K., Ashburn, J. R., Torng, C. J., Hor, P. H., Meng, R. L., Gao, L., Huang, Z. J., Wang, Y. Q., Chu, C. W., Phys. Rev. Lett. 58, 908 (1987).Google Scholar
3. Maeda, H., Tanaka, Y., Fukutomi, M., Asano, T., Jap. J. Appl. Phys. 27, L209 (1988).Google Scholar
4. Sheng, Z. Z. and Hermann, A. M., Nature 332, 55 (1988); 332, 138 (1988).Google Scholar
5. Simon, R., Solid State Technol. 32, 141 (1989).Google Scholar
6. Withers, R. S., Anderson, A. C., Oates, D. E., Solid St. Tech. 38 83 (1990).Google Scholar
7. Schmidt, M. S., Force, R. J., Hammond, R. B., Eddy, M. M., Olson, W. L., IEEE Trans. Microwave Theory Tech. 39, 1475 (1991).Google Scholar
8. Chaloupka, H., Klein, N., Peiniger, M., Piel, H., Pischke, A., Splitt, G., IEEE Trans. Microwave Theory Tech. 39, 1513 (1991).Google Scholar
9. Olson, W. L., Eddy, M. M., James, T. W., Hammond, R. B., Graner, G., Drabeck, L., Appl. Phys. Lett. 55, 188 (1989).Google Scholar
10. Cooke, D. W., Gray, E. R., Arendt, P. N., Reeves, G. A., Houlton, R. J., Elliott, N. E., Brown, D. R., Appl. Phys. Lett. 56 (1990) 2147.Google Scholar
11. Narumi, E., Song, L. W., Hwa, S., Ye, J., Yang, F., Kao, Y. H., Patel, S., Shaw, D. T., Tkaczyk, J. E., IEEE Trans. Magn. 27, 1648 (1991).Google Scholar
12. Cooke, D. W., Arendt, P. N., Gray, E. R., Mayer, A., Brown, D. R., Elliott, N. E., Reeves, G. A., Portis, A. M., IEEE Trans. Magn. 27, 880 (1991).Google Scholar
13. Schulz, D. L., Richeson, D. S., Malandrino, G., Neumayer, D., Marks, T. J., DeGroot, D. C., Schindler, J. L., Hogan, T., Kannewurf, C. R., Thin Solid Films, 1992 (in press).Google Scholar
14. Joint Commitee for Powder Diffraction Standards (JCPDS), Center for Diffraction Data, 1601 Park Lane, Swarthmore, PA 19081, No.4–454 (BaF2), No.5–661 (CuO).Google Scholar
15. Malandrino, G., Richeson, D. S., Marks, T. J., DeGroot, D. C., Schindler, J. L., Kannewurf, C. R., Appl. Phys. Lett. 58, 182 (1991).Google Scholar
16. Lee, W. Y., Garrison, S. M., Kawasaki, M., Venturini, E. L., Ahn, B. T., Beyers, R., Salem, J., Savoy, R., Vasquez, J., Appl. Phys. Lett. 60, 772 (1992).Google Scholar
17. Sheng, Z. Z., Sheng, L., Su, H. M., Hermann, A. M., Appl. Phys. Lett. 53, 2686 (1988);Google Scholar
Richeson, D., Tonge, L. M., Zhao, J., Zhang, J., Marcy, H. O., Marks, T. J., Wessels, B. W., Kannewurf, C. R., Appl. Phys. Lett. 54, 2154 (1989).Google Scholar
18. Okamoto, H., Chakrabarti, D. J., Laughlin, D. E., Massalski, T. B., Bull. Alloy Phase Diagrams, 8, 454 (1987).Google Scholar
19. Baren, M. R., Bull. Alloy Phase Diagrams, 10, 675 (1989).Google Scholar
20. Zhang, J. M., Wessels, B. W., Richeson, D. S., Marks, T. J., J. Cryst. Growth 107, 705 (1991).Google Scholar