Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T02:54:05.312Z Has data issue: false hasContentIssue false

Deposition of Fluorinated Amorphous Carbon Thin Films with Low Dielectric Constant and Thermal Stability

Published online by Cambridge University Press:  17 March 2011

Sang-Soo Han
Affiliation:
Laboratory of Optical Materials and Coating(LOMC), Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology(KAIST), 373-1, Kusongdong, Yusonggu, Taejon, 305-701, Korea
Byeong-Soo Bae
Affiliation:
Laboratory of Optical Materials and Coating(LOMC), Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology(KAIST), 373-1, Kusongdong, Yusonggu, Taejon, 305-701, Korea
Get access

Abstract

Fluorinated amorphous carbon (a-C:F) thin films were deposited by inductively coupled plasma enhanced chemical vapor deposition (ICP-CVD) with increasing CF4:CH4 gas flow rate ratio, and then annealed with increasing annealing temperature (100, 200, 300, and 400.). We have found the reduction mechanism of the dielectric constant and the thermally stable condition for the a-C:F films. On the basis of the results, the optimal condition to satisfy both the low dielectric constant and the thermal stability is followed as; the a-C:F films have to have the compatible F content to make a compromise between the two properties; the C-Fx bonding configuration has to exist as a form of C-F2 & C-F3 instead of C-F; The films should be somewhat cross-linked structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lu, T-M. and Moore, J. A., MRS Bulletin 22(10), 28 (1997).10.1557/S0883769400034163Google Scholar
2. Nason, T., Moore, J. A. and Lu, T. M., Appl. Phys. Lett. 60, 1866 (1992).10.1063/1.107163Google Scholar
3. Blanchet, G. B., Appl. Phys. Lett. 62, 479 (1993).10.1063/1.108939Google Scholar
4. Endo, K. and Tatsumi, T., Appl. Phys. Lett. 68, 2864 (1996).10.1063/1.116350Google Scholar
5. Endo, K. and Tatsumi, T., J. Appl. Phys. 78, 1370 (1995).10.1063/1.360313Google Scholar
6. Ma, Y., Yang, H., Guo, J., Sathe, C., Agui, A., and Nordgren, J., Appl. Phys. Lett. 72, 3353 (1998).10.1063/1.121601Google Scholar
7. Yang, H., Tweet, D. J., Ma, Y. and Nguyen, T., Appl. Phys. Lett. 73, 1514 (1998).10.1063/1.122190Google Scholar
8. Han, S-S., Kim, H. R. and Bae, B-S., J. Electrochem. Soc. 146, 3383 (1999).10.1149/1.1392482Google Scholar
9. Klein, S. S., Nucl. Instrum. Methods, B15, 464 (1986).10.1016/0168-583X(86)90344-7Google Scholar
10. Ku, C. C. and Leipins, R., Electrical Properties of Polymers ( Hanser Publishers, New York, 1987), p. 41.Google Scholar
11. Kingery, W. D., Bowen, H. K. and Uhlmann, D. R., Introduction to Ceramics (John Wiley & Sons, New York, 1991), p. 921.Google Scholar