Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T16:44:23.438Z Has data issue: false hasContentIssue false

Deformation of C15 Laves Phase Alloys

Published online by Cambridge University Press:  22 February 2011

F. Chu
Affiliation:
Center for Materials Science, MS K765, Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A.
D.P Pope
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, U.S.A.
Get access

Abstract

Details of the structure and previous work on the deformation of C15 Laves phases are reviewed. The phase diagram of the Hf-V-Nb system, some metallurgical and physical properties, mechanical behavior, and the deformation mechanisms of HfV2+Nb (C15 HfV2+Nb and V-rich bcc solution) are presented based on our previous work. Theoretical approaches to understanding the results of these studies are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Laves, F., in Theory of Alloy Phase, p. 123, (ASM, Cleveland, OH), (1956).Google Scholar
2. Wernick, J. H., in Intermetallic Compounds, ed. by Westbrook, J., John-Wiley&Sons, Inc., New York, (1967).Google Scholar
3. Takeyama, M. and Liu, C. T., Mater. Sci. & Eng., A132, 61 (1991).Google Scholar
4. Thoma, D. J. and Perepezko, J. H., Mater. Sci. & Eng. A156, 97 (1992).Google Scholar
5. Chang, C. S., Ph. D. Thesis, University of Pennsylvania, (1991).Google Scholar
6. Inoue, K. and Tachikawa, K., IEEE Trans. Mag. Mag–13, 840 (1977).Google Scholar
7. Livingston, J. D. and Hall, E. L., J. Mater. Res. 5, 5 (1990).Google Scholar
8. Chu, F. and Pope, D. P., Mat. Sci. & Eng. A170, 39 (1993).Google Scholar
9. Allen, C. W. and Liao, K. C., Phys. Stat. Sol. (a) 74, 673 (1982).Google Scholar
10. Hazzledine, P. M., Kumar, K. S., Miracle, D. B. and Jackson, A. G., Mat. Res. Soc. Symp. Proc. 288, 591 (1992).Google Scholar
11. Allen, C. W., Delavignette, P. and Amelinckx, S., Phys. Stat. Sol. (a) 9, 237 (1972).Google Scholar
12. Moran, J. B., Trans. Metall. Soc. of AIME, 233, 1473 (1965).Google Scholar
13. Livingston, J. D., Hall, E. L. and Koch, E. F., Mat. Res. Soc. Symp. Proc. 133, 243 (1989).Google Scholar
14. Chu, F. and Pope, D. P., Scripta Met. et Mat. 26, 399 (1992).Google Scholar
15. Allen, C. W.: private communication, 1992.Google Scholar
16. Chu, F. and Pope, D. P., Scripta Met. et Mat., 28, 331, (1993).Google Scholar
17. Chu, F., Mitchell, T. E., Chen, S. P., Sob, M., Siegl, R., and Pope, D. P., in this volume.Google Scholar
18. Chu, F., Lei, Ming, Migliori, A., Chen, S. P., and Mitchell, T. E., Phil. Mag. B 70, 867 (1994).Google Scholar
19. Chu, F. and Pope, D. P., Mat. Res. Soc. Symp. Proc. Vol. 288, 561 (1992).Google Scholar
20. Christian, J. W., The Theory of Transformation in Metals and Alloys, Pergamon Press, London, 1975.Google Scholar
21. Christian, J. W. and Laughlin, D. E., Acta Metall. 36, 1617 (1988).Google Scholar
22. Khantha, M., Vitek, V., and Pope, D. P., Mat. Res. Soc. Symp. Proc. 133, (1989).Google Scholar
23. Hazzledine, P. M. and Pirouz, P., Scr. Met. at Mat., 28, 1277 (1993).Google Scholar
24. Kronberg, M. L., Acta Metall. 5, 507 (1957).Google Scholar
25. Chu, F., Ph. D. Thesis, University of Pennsylvania, Philadelphia, PA, (1993).Google Scholar
26. Pope, D. P. and Chu, F., in Structural Intermetallics, ed by Darolia, R., et al., 637, (TMS, Warrendale, PA), (1993).Google Scholar
27. Pope, D. P. and Chu, F., Phil. Mag. A 69, 409 (1994).Google Scholar
28. Vitek, V. and Chen, S. P., Scripta Met. et Mat. 25, 1237 (1991).Google Scholar
29. Fu, C. L. and Yoo, M. H., Mater. Chem. & Phys., 32, 25 (1992).Google Scholar
30. Jarlborg, T. and Freeman, A. J., Phy. Rev. B, 22, 2332 (1980).Google Scholar
31. Rennert, P. and Taut, M., Phys. Status Solidi 41, 703 (1970).Google Scholar
32. Johnson, D. L., Phys. Rev. B 9, 2273 (1974).Google Scholar
33. Switendick, A.C., Proc. Rare Earth Res. Conf. 10th.Google Scholar
34. Haydock, R. and Johannes, R. L., J. Phys. F 5, 2055 (1975).Google Scholar
35. Terao, K. and Shimizu, M., Phys. Stat. Sol. B 139, 485 (1987).Google Scholar
36. Asano, S. and Ishida, S., J. Phys. F: Met. Phys. 18, 501 (1988).Google Scholar
37. Rennert, P. and Radwan, A. M., Phys. Stat. Sol. B 79, 167 (1977).Google Scholar
38. Ohta, Y. and Pettifor, D. G., J. Phys. Condens. Matter 2, 8189 (1990).Google Scholar
39. Johnston, R. L. and Hoffmann, R., Z. anorg. allg. Chem. 616, 105 (1992).Google Scholar
40. Sluiter, M. and Turchi, P. E. A., Phys. Rev. B 43, 12521 (1991).Google Scholar
41. Chu, F., Sob, M., Siegl, R., Mitchell, T. E. and Chen, S. P., Phil. Mag. B, 70, 881 (1994).Google Scholar
42. Omenci, A. H., Chu, F., Chen, S. P., Thoma, D. J., Wills, J., and Albers, R. C., to be published.Google Scholar
43. Chu, F., Thoma, D. J., He, Y., Mitchell, T. E., Chen, S. P., and Perepezko, J. H., in this volume.Google Scholar