No CrossRef data available.
Published online by Cambridge University Press: 22 February 2011
A hot workability study was conducted on an orthorhombic Ti-21AI-23Nb alloy using isothermal, constant velocity compression tests, over the temperature range 900–1155°C and nominal strain rate range 0.001 to 1.0 s−1. Three different microstructures corresponding to (a) hot rolled and mill annealed, (b) β0 -heat treated, and (c) β0 solution treated and direct aged conditions were examined. These microstructures varied from a relatively coarse distribution of O-phase precipitates in a matrix of transformed βO to the metastable retained βO. Flow stress displayed a sharp dependence on temperature, strain rate and on the initial structure. While uniform plastic flow was obtained at high temperatures and for structures containing primary O, βO-heat treated structures led to pronounced flow softening. Strong yield point phenomena and serrated flow were observed in selected test conditions and for microstructures containing high volume fractions of metastable βO. These flow instabilities resulting from Luder band propagation and dynamic strain aging are interpreted in terms of dislocation interactions in supersaturated βO.