Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-03T08:54:28.041Z Has data issue: false hasContentIssue false

Defects and Phase Change Induced by Giant Electronic Excitations With GeV Ions And 30MeV Cluster Beam

Published online by Cambridge University Press:  15 February 2011

P. Thevenard
Affiliation:
Département de Physique des MatériauxUniversité Claude Bernard LYON I69622 VILLEURBANNE, FRANCE, [email protected]
M. Beranger
Affiliation:
Département de Physique des MatériauxUniversité Claude Bernard LYON I69622 VILLEURBANNE, FRANCE, [email protected]
B. Canut
Affiliation:
Département de Physique des MatériauxUniversité Claude Bernard LYON I69622 VILLEURBANNE, FRANCE, [email protected]
S. M. M. Ramos
Affiliation:
Département de Physique des MatériauxUniversité Claude Bernard LYON I69622 VILLEURBANNE, FRANCE, [email protected]
N. Bonardi
Affiliation:
Département de Physique des MatériauxUniversité Claude Bernard LYON I69622 VILLEURBANNE, FRANCE, [email protected]
G. Fuchs
Affiliation:
Département de Physique des MatériauxUniversité Claude Bernard LYON I69622 VILLEURBANNE, FRANCE, [email protected]
Get access

Abstract

MgO and LiNbO 3 single crystals were bombarded with GeV swift heavy ions (Pb, Gd) and 30MeV C60 clusters to study the damage production induced by giant electronic processes at stopping power up to 100keV/nm. The defect creation was characterized by optical absorption, transmission electron microscopy (TEM) and Rutherford backscattering spectrometry in channeling geometry (RBS-C). In MgO point defects (F type centers) and extended defects (dislocation loops) were created by ionization processes in addition to those associated with nuclear collisions. The F-center concentration induced by electronic energy excitations was studied at different temperatures and as a function of the particle electronic energy losses. TEM revealed that dislocation loops were produced close to the particle trajectories and amorphization was never observed. On the opposite, in LiNbO3 continuous amorphous tracks were evidenced above a threshold near 5keV/nm. The dependance of this effects with various solid state parameters will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Clinard, F.and Hobbs, L.W., in Physics of Radiation Effects in Crystals, edited by R.A. Johnson and A.N. Orlov (Elsevier, Amsterdam, 1986), Chap. 7.Google Scholar
[2] KlaumUnzer, S.and Schumacher, G., Phys. Rev. Lett., 51, 1987 (1983).Google Scholar
[3] Audouard, A., Balanzat, E., Fuchs, G., Jousset, J.C., Lesueur, D.and Thome, L., Europhys. Lett., 3, 327 (1987).Google Scholar
[4] Audouard, A., Balanzat, E., Jousset, J.C., Chamberod, A., Dunlop, A., Lesueur, D., Fuchs, G., Spohr, S., Vetter, J. andThome, L., Phys. Rev. Lett., 65, 875 (1990).Google Scholar
[5] Barbu, A., Dunlop, A., Lesueur, D.and Averback, R.S., Europhys. Lett., 15, 37 (1991).Google Scholar
[6] Dammak, H., Barbu, A., Dunlop, A., Lesueur, D.and Lorenzelli, N., Phil. Mag. Lett., 67, 253 (1993).Google Scholar
[7] Dunlop, A.and Lesueur, D., Radiat. Eff. and Defects in Solids, 126, 123 (1993).Google Scholar
[8] Toulemonde, M., Fuchs, G., Nguyen, N., Studer, F.and Groult, D., Phys. Rev. B, 35, 6560 (1987).Google Scholar
[9] Studer, F., Groult, D., Nguyen, N.and Toulemonde, M., Nucl. Instr. and Methods, B 19/20, 856 (1987).Google Scholar
[10] Lesueur, D.and Dunlop, A., Radiat. Eff. Defects in Solids, 126, 163 (1993).Google Scholar
[11] Toulemonde, M., Dufour, C.and Paumier, E., Phys. Rev., B 46, 14362 (1992).Google Scholar
[12] Szenes, G., to be published in Nucl. Instr. and Meth. in Phys. Res. B (1996).Google Scholar
[13] Baudin, K., Brunelle, A., Chabot, M., Negra, S. Della, Depauw, J., Gardes, D., Hakansson, P., Lebeyec, Y., Billebaud, A., Fallavier, M., Remillieux, J., Poizat, J.C., Nucl. Instr. Meth. Phys. Res. B 94, 341 (1994).Google Scholar
[14] Canut, B., Benyagoub, A., Marest, G., Meftah, A., Moncoffre, N., Ramos, S.M.M., Studer, F., Thévenard, P., Toulemonde, M., Phys. Rev. B 51, 12194 (1995).Google Scholar
[15] Beranger, M., Brenier, R., Canut, B., Ramos, S.M.M., Thévenard, P., Brunelle, A., Negra, S. Della, Lebeyec, Y., Balanzat, E., Toulemonde, M., Tombrello, T., Phys. Rev. B 53, 14773, (1996).Google Scholar
[16] Canut, B., Brenier, R., Meftah, A., Moretti, P., Salem, S. Ould, Ramos, S.M.M., Thdvenard, P.and Toulemonde, M., Nucl. Instr. and Meth. in Phys. Res., B 91, 312 (1994).Google Scholar
[17] Gibbons, J.F., Proc. IEEE, 60, 1062 (1972).Google Scholar