Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T16:15:18.987Z Has data issue: false hasContentIssue false

Current Controlled HTS Switches Fabricated by a Reactive Patterning Technique

Published online by Cambridge University Press:  26 February 2011

Q. Y. Ma
Affiliation:
Physics Dept. University of British Columbia, Vancouver, V6T 1Z1, Canada
W. N. Hardy
Affiliation:
Physics Dept. University of British Columbia, Vancouver, V6T 1Z1, Canada
R. B. Laibowitz
Affiliation:
IBM Research Center, Yorktown Heights, NY 10598
E. S. Yang
Affiliation:
Dept. of Electrical Engineering, Columbia University, New York, NY 10027
Get access

Abstract

A current controlled HTS switch (CCSS) has been fabricated using the Si-YBCO reactive patterning technique. The Si films were deposited on MgO substrates by e-beam evaporation and patterned via a lift-off process. The YBCO films were deposited thereafter by pulsed laser deposition to form micron-sized HTS strip lines with different widths and lengths. A typical line has a normal resistance ranging from 10 Ω to 100 KΩ. A CCSS was constructed using such a HTS line as a resistor in parallel with a load resistor. The operation of CCSS is similar to that of a current divider. Applications of CCSS includes HTS logic gates and circuit breakers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zeldov, E., Amer, N. M., Koren, G., and Gupta, A., Phys. Rev. B. 29, p9217 (1989)Google Scholar
2. Frenkel, A., Saffi, M. A., Venkatesan, T., Lin, C., Wu, X. D., and Inam, A., Appl. Phys. Lett. 54, p1594 (1989)Google Scholar
3. Donaldson, W. R., Kadin, A., Ballentin, P. H., and Sobolewski, R., Appl. Phys. Lett. 54, p2470 (1989)Google Scholar
4. Kwok, H. S., Zheng, J. P., Ying, Q. Y., and Rao, R., Appl. Phys. Lett. 512473 (1989)Google Scholar
5. Tzeng, Y., Cutshaw, C., Roppel, T., Wu, C., Tanger, C. W., Belser, M., Williams, R., Czekala, L., Fernandez, M., and Askew, R., Appl. Phys. Lett. 54, p949 (1989)Google Scholar
6. Martens, J. S., Ginley, D. S., Beyer, J. B., Nordman, J. E., and Hohenwarter, G. K., IEEE Trans. Appl. Supercon. 1, p95101, (1991)Google Scholar
7. Ma, Q. Y. and Yang, E. S., Cryogenics, 30, p1146, (1990)Google Scholar
8. Gershenzon, E. M., Gol'tsman, G. N., Dzardanov, A. L., and Zorin, M. A., IEEE Trans, on Mag. 27, p2844 (1991)Google Scholar
9. Ma, Q. Y., Treyz, G. V., Shu, C., Yang, E. S., and Chang, Chin-An, Appl. Phys. Lett. 57, p896, (1989)Google Scholar
10. Fork, D. K., Barrea, A., Geballe, T., Viano, A. M., and Fenner, D. B., Appl. Phys. Lett. 57, p1137, (1990)Google Scholar
11. Ma, Q. Y., Yang, E. S., Laibowitz, R. B., and Chang, C. A., J. Elec. Mat. 21, p407 (1992)Google Scholar
12. Ma, Q. Y., Schmidt, M. T., Yang, E. S., Chan, S. W., Zheng, J. P., and Kwok, H. S., J. Appl. Phys. 21, p1(1992)Google Scholar