Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T15:53:38.082Z Has data issue: false hasContentIssue false

A Comparative Study of Radiation Damage In A12O3, FeTiO3, And MgTiO3

Published online by Cambridge University Press:  21 February 2011

Jeremy N. Mitchell
Affiliation:
Materials Science and Technology Division, Mail Stop K762, Los Alamos National Laboratory, Los Alamos, NM 87545
Ning Yu
Affiliation:
Materials Science and Technology Division, Mail Stop K762, Los Alamos National Laboratory, Los Alamos, NM 87545
Kurt E. Sickafus
Affiliation:
Materials Science and Technology Division, Mail Stop K762, Los Alamos National Laboratory, Los Alamos, NM 87545
Michael Nastasi
Affiliation:
Materials Science and Technology Division, Mail Stop K762, Los Alamos National Laboratory, Los Alamos, NM 87545
Thomas N. Taylor
Affiliation:
Materials Science and Technology Division, Mail Stop K762, Los Alamos National Laboratory, Los Alamos, NM 87545
Kenneth J. Mcclellan
Affiliation:
Materials Science and Technology Division, Mail Stop K762, Los Alamos National Laboratory, Los Alamos, NM 87545
Gordon L. Nord Jr
Affiliation:
United States Geological Survey, Mail Stop 959, Reston, VA 22092
Get access

Abstract

Oriented single crystals of synthetic alpha-alumina (α-Α12O3), geikielite (MgTiO3), and natural ilmenite (FeTiO3) were irradiated with 200 keV argon ions under cryogenic conditions (100 K) to assess their damage response. Using Rutherford backscattering spectrometry combined with ion channeling techniques, it was found that ilmenite amorphized readily at doses below 5×1014, alumina amorphized at a dose of 1-2x1015, and geikielite was amorphized at -2x1015 Ar cm-2 . The radiation damage response of the ilmenite crystal may be complicated by the presence of hematite exsolution lamellae and the experimentally induced oxidation of iron. The relative radiation-resistance of geikielite holds promise for similar behavior in other Mg-Ti oxides.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hobbs, L.W. and Clinard, F.W. Jr., J. Phys., Colloque, 41, C6232 (1980).Google Scholar
2 Clinard, F.W. Jr., Hurley, G.F., and Hobbs, L.W., J. Nucl. Mater. 108/109, 655 (1982)Google Scholar
3 Zinkle, S.J., J. Am. Ceram. Soc. 72, 1343 (1989).Google Scholar
4 Nakai, K., Fukumoto, K., and Kinoshita, C., J. Nucl. Mater. 191194, 630 (1992).Google Scholar
5 Sickafus, K.E., Yu, N., and Nastasi, M., Nucl. Instru. Meth. B, (1995), in press. Google Scholar
6 Moncoffre, N., Nucl. Instru. Meth. B59/60, 1129 (1991).Google Scholar
7 McHargue, C.J., Farlow, G.C., White, C.W., Williams, J.M., Appleton, B.R., and Naramoto, H., Mater. Sci. Engin. 69, 123 (1985).Google Scholar
8 Bull, S.J. and Page, T.F., J. Mater. Sci. 26, 3086 (1991).Google Scholar
9 Shindo, I., J. Crystal Growth 50, 839 (1980).Google Scholar
10 Ziegler, J.F., Biersack, J.P., and Littmark, U., The Stopping and Range of Ions in Solids. (Pergamon, New York, 1985).Google Scholar