No CrossRef data available.
Published online by Cambridge University Press: 10 February 2011
The clustering in alkali silica glasses (M2O) x (SiO2)1-x, where M is either Na or Rb, and x ranges between 0 and 0.4, was studied using molecular dynamics simulations. Computations were performed using a semi-empirical potential, including two- and three-body terms as well as dynamic partial charge transfer. Characterization of the structures was based on pair correlation functions, neutron static structure factor and ring statistics. Results have shown a much stronger tendency to cluster in case of Na than of Rb. The irregular arrangement of Na is evidenced by a decay pattern in the Na-Na pair correlation function, which can be associated with a fractal dimension. The clustering tendency can be attributed to the differences in the way the network structure is able to accommodate the introduction of modifying cations. As opposed to Rb, the smaller Na cation can fit on sites only slightly larger than is required for Si. This would distort the structure but hardly alter its topology. Rb on the other hand, requires larger interstices, which results in a reconstruction of the network and a significantly different intermediate range order. Na can achieve a similar influence on the network structure if they group in pairs.