Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T03:25:09.462Z Has data issue: false hasContentIssue false

Cluster Model Study of the Incorporation Process of Excess Arsenic into Interstitial Positions of the GaAs Lattice

Published online by Cambridge University Press:  10 February 2011

T. Marek
Affiliation:
Institute for Microcharacterisation, Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany
S. Kunsági-Máté
Affiliation:
Institute for General and Physical Chemistry, Janus Pannonius University, 7601Pécs, Hungary
H. P. Strunk
Affiliation:
Institute for Microcharacterisation, Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany
Get access

Abstract

We study an As2 molecule approaching a planar, non-reconstructed, As terminated GaAs(001) surface by using a suitable cluster and quantum mechanical ab-initio calculation methods. During our calculations the As2 molecule is always oriented perpendicularly to the surface and its bonding length may vary. We find a metastable position below the growing surface which facilitates the incorporation of the leading As atom into an interstitial position of the crystal during growth. We give a first model for this incorporation process.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Low Temperature GaAs and Related Materials, ed.: Witt, G.L. et al., MRS Symposia Proceedings Vol.241 (Material Research Society, Pittsburg, 1992)Google Scholar
[2] Symposium on Non-Stoichiometric Ill-V Compounds, eds.: Marek, T., Malzer, S., Kiesel, P., Physik Mikrostrukturierter Halbleiter Vol. 6 (Friedrich-Alexander- Universität Erlangen-Nürnberg, Lehrstuhl Mikrocharakterisierung, Erlangen, 1998, ISBN: 3–932392–12–4)Google Scholar
[3]Marek, T., Kunsagi-Mate, S., Strunk, H.P. in 2nd Symposium on Non-Stoichiometric III-V Compounds, eds.: Kiesel, P., Malzer, S., Marek, T., Physik Mikrostrukturierter Halbleiter Vol. 10 (Friedrich-Alexander Universität Erlangen-Nürnberg, Lehrstuhl Mikrocharakterisierung, Erlangen, 1999, ISBN: 3–932392–19–1)Google Scholar
[4]Fukunishi, Y., Nakatsuji, H., Surf. Sci. 291 (1993) 271.Google Scholar
[5]Kunsági-Máté, S., Marek, N., Marek, T., Strunk, H.P., Surf.Sci. 365 (1996) 743.Google Scholar
[6]Snyder, L.C. and Wasserman, Z., Surf.Sci. 77 (1987) 52.Google Scholar
[7]Kenton, A.C. and Ribarsky, M.W., Phys.Rev.B 23 (1981) 2897.Google Scholar
[8]Hermann, K. and Bagus, P.S., Phys Rev.B. 20 (1979) 1603.Google Scholar
[9]Hellwege, K.H., Pies, W. and Weiss, A., Crystal Structure Data of Inorganic Compounds, Landolt Börnstein, New Series, Group III, Vol.7 (Springer, Berlin, 1979)Google Scholar
[10]Callomon, J.H., Hirota, E., Kuchitsu, K., Lafferty, W.J., Maki, A.G. and Pote, C.S., Structure Data of Free Polyatomic Molecules, Landolt Böirnstein, New Series, Group II, Vol.7 (Springer, Berlin, 1976).Google Scholar
[11]Frisch, M.J., Head, M.-Gordon and Pople, J.A, Chem.Phys.Lett., 166 (1990) 281.Google Scholar
[12]Schlegel, H.B., J. Comp. Chem., 3 (1982) 214.Google Scholar
[13]Hay, P.J. and Wadt, W.R., J. Chem. Phys., 82 (1985) 270.Google Scholar
[14]Wadt, W.R. and Hay, P.J., J. Chem.Phys., 82 (1985) 284.Google Scholar
[15]Hay, P.J. and Wadt, W.R., J. Chem.Phys., 82 (1985) 299.Google Scholar