Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T04:19:33.165Z Has data issue: false hasContentIssue false

Chemical modification of indium-tin-oxide electrodes by surface molecular design

Published online by Cambridge University Press:  15 March 2011

Chimed Ganzorig
Affiliation:
Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
Masamichi Fujihira
Affiliation:
Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
Get access

Abstract

Indium-tin-oxide (ITO) is the most widely used material as a transparent electrode due to its excellent transparency and high conductivity. The devices based on bare ITO, however, exhibited inefficient hole injection due to insufficient high work function and required high drive voltages. Thus, various surface treatments of ITO have been attempted to change the work function of ITO in order to reduce the hole injection barrier height. Electroluminescent (EL) characteristics of devices were improved dramatically using ITO chemically modified with H-, Cl-, and CF3-terminated benzoyl chlorides. By the use of reactive -COCl groups, ITO surfaces were modified quickly and the work function of the modified ITO was changed widely depending upon the permanent dipole moments introduced in p-position of benzoyl chloride. We also compared the performance of the EL devices with ITO modified with different binding groups (-SO2Cl, -COCl, and -PO2Cl2) of p-chlorobenzene derivatives. Finally, we examined the correlation between the change in the work function and the performance of the EL devices by the chemical modification and found that the enormous increase in ITO work function up to 0.9 eV is possible using phenylphosphoryl dichloride with a CF3-terminal group in p-position.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tang, C. W. and VanSlyke, S. A., Appl. Phys. Lett. 51, 913 (1987).Google Scholar
2. Friend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Marks, R. N., Taliani, C., Bradley, D. D. C., Santos, D. A. Dos, Bredas, J. L., Lögdlund, M., and Salaneck, W. R., Nature (London) 397, 121 (1999).Google Scholar
3. Ishii, H., Sugiyama, K., Ito, E., and Seki, K., Adv. Mater. 11, 605 (1999).Google Scholar
4. Fujihira, M., Annu. Rev. Mater. Sci. 29, 353 (1999).Google Scholar
5. Parker, I. D., J. Appl. Phys. 75, 1656 (1994).Google Scholar
6. Tang, C. W., VanSlyke, S. A., and Chen, C. H., J. Appl. Phys. 65, 3610 (1989).Google Scholar
7. Wu, C. C., Wu, C. I., Sturn, J. C., and Kahn, A., Appl. Phys. Lett. 70, 1348 (1997).Google Scholar
8. Li, F., Tang, H., Shinar, J., Resto, O., and Weisz, S. Z., Appl. Phys. Lett. 70, 2741 (1997).Google Scholar
9. Nüesch, F., Rothberg, L. J., Forsythe, E. W., Le, Q. T., and Gao, Y., Appl. Phys. Lett. 74, 880 (1999).Google Scholar
10. Kim, J. S., Granström, M., Friend, R. H., Johansson, N., Salaneck, W. R., Daik, R., Feast, W. J., and Cacialli, F., J. Appl. Phys. 84, 6859 (1998).Google Scholar
11. Mason, M. G., Hung, L. S., Tang, C. W., Lee, S. T., Wong, K. W., and Wang, M., J. Appl. Phys. 86, 1688 (1999).Google Scholar
12. Milliron, D. J., Hill, I. G., Shen, C., Kahn, A., and Schwartz, J., J. Appl. Phys. 87, 572 (2000).Google Scholar
13. Campbell, I.H., Rubin, S., Zawodzinski, T. A., Kress, J. D., Martin, R. L., Smith, D. L., Barashkov, N. N., and Ferraris, J. P., Phys. Rev. B 54, 14321 (1996).Google Scholar
14. Nüesch, F., Rotzinger, F., Si-Ahmed, L., and Zuppiroli, L., Chem. Phys. Lett. 288, 861 (1998).Google Scholar
15. Zuppiroli, L., Si-Ahmed, L., Kamaras, K., Nüesch, F., Bussac, M. N., Ades, D., Siove, A., Moons, E., and Grätzel, M., Eur. Phys. J. B 11, 505 (1999).Google Scholar
16. Appleyard, S. F. J., Day, S. R., Pickford, R. D., and Willis, M. R., J. Mater. Chem. 10, 169 (2000).Google Scholar
17. Fujihira, M., Ohishi, N., and Osa, T., Nature 268, 226 (1977).Google Scholar
18. Fujihira, M., Kubota, T., and Osa, T., J. Electroanal. Chem. 119, 379 (1981).Google Scholar
19. Laibinis, P. E., Hickman, J. J., Wrighton, M. S., and Whitesides, G. M., Science 245, 845 (1989).Google Scholar
20. Vogel, V. and Möbius, D., J. Colloid Interface Sci. 126, 408 (1988).Google Scholar
21. Ganzorig, C., Kwak, K. J., Yagi, K., and Fujihira, M., Appl. Phys. Lett. 79, 272 (2001).Google Scholar
22. Ganzorig, C. and Fujihira, M., Jpn. J. Appl. Phys. 38, L1349 (1999).Google Scholar