Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-16T08:23:19.913Z Has data issue: false hasContentIssue false

Charge-influenced structural properties of electrically connected platinum nanoparticles

Published online by Cambridge University Press:  21 March 2011

R. N. Viswanath
Affiliation:
Institut für Nanotechnologie, Forschungszentrum Karlsruhe, Karlsruhe, Germany
J. Weissmüller
Affiliation:
Institut für Nanotechnologie, Forschungszentrum Karlsruhe, Karlsruhe, Germany
R. Würschum
Affiliation:
Institut für Nanotechnologie, Forschungszentrum Karlsruhe, Karlsruhe, Germany Technische Universität Graz, Institut für Technische Physik, Graz, Austria
H. Gleiter
Affiliation:
Institut für Nanotechnologie, Forschungszentrum Karlsruhe, Karlsruhe, Germany
Get access

Abstract

We present results of a study motivated by the recent suggestion that the properties of nanocrystalline materials with a large surface-to-volume ratio can be tuned by inducing spacecharge regions at interfaces by means of an applied voltage. As an example, we investigate the reversible variation of the lattice constant of platinum nanoparticles immersed in an aqueous 1M KOH electrolyte as a function of applied potential. It is found that a reversible volumetric strain of up to 1.2 % can be induced, corresponding to pressures of up to 3.2 GPa. We present the experimental set-ups for in-situ X-ray diffraction with an electrochemical cell. The variation of the space charge at the metal-electrolyte interface results in a variation of the surface stress f as a function of the applied potential, which is not an electrocapillary effect.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Gleiter, H., Proceedings of the 2nd Riso International Symposium on Metallurgy and Materials Science, ed. Hansen, N., Horsewell, A. and Leffers, T. (Roskilde, 1981) p. 15.Google Scholar
[2] Gleiter, H., Progress in Materials Science, 33 223 (1989).Google Scholar
[3] Gleiter, H., Weissmüller, J., Wollersheim, O. and Würschum, R., Acta Mater, 49 737 (2000).Google Scholar
[4] Kreibig, U., Bour, G., Hilger, A. and Gark, M., Phys. Stat. Sol. a 175 351 (1999).Google Scholar
[5] Weissmüller, J. and Cahn, J. W., Acta. Mater. 45 1899 (1997).Google Scholar
[6] Ibach, H., Surface Science Reports 29 193 (1997).Google Scholar
[7] Cammarata, R. C., Prog. Surf. Sci. 46 1 (1994).Google Scholar
[8] Spaepen, F., Acta mater. 48 31 (2000).Google Scholar
[9] Weissmueller, J. and Lemier, C., Phys. Rev. Lett. 82 213 (1998).Google Scholar
[10] Láng, G. and Heusler, K. E., J. Electranal. Chem. 391 169 (1995).Google Scholar
Haiss, W. and Sass, J. -K., Langmuir 12 4311 (1996).Google Scholar
[11] Liu, K. -C. and Anderson, M. A., J. Electrochem. Soc. 143 124 (1996).Google Scholar
[12] Seo, M., Makino, T. and Sato, N., J. Electrochem. Soc. 133 1138 (1986).Google Scholar