Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T03:59:47.307Z Has data issue: false hasContentIssue false

Characterizing the Two-Dimensional Doping Concentration inside Silicon-Nanowires Using Scanning Spreading Resistance Microscopy

Published online by Cambridge University Press:  31 January 2011

Thomas Hantschel
Affiliation:
[email protected], IMEC, Kapeldreef 75, Leuven, B-3001, Belgium
Volker Schulz
Affiliation:
[email protected], IMEC, Leuven, Belgium
Andreas Schulze
Affiliation:
[email protected], IMEC, Leuven, Belgium
Esteban Angeletti
Affiliation:
[email protected], IMEC, Leuven, Belgium
Firat Guder
Affiliation:
[email protected], IMEC, Leuven, Belgium
Volker Schmidt
Affiliation:
[email protected], Max Planck Institute of Microstructure Physics, Halle, Germany
Stephan Senz
Affiliation:
[email protected], Max Planck Institute of Microstructure Physics, Halle, Germany
Pierre Eyben
Affiliation:
[email protected], IMEC, Leuven, Belgium
Wilfried Vandervorst
Affiliation:
[email protected], IMEC, Leuven, Belgium
Get access

Abstract

The characterization of doped regions inside silicon nanowire structures poses a challenge which must be overcome if these structures are to be incorporated into future electronic devices. Precise cross-sectioning of the nanowire along its longitudinal axis is required, followed by two-dimensional electrical measurements with nanometer spatial resolution. The authors have developed an approach to cross-section silicon nanowires and to characterize them by scanning spreading resistance microscopy (SSRM). This paper describes a cleaving- and polishing-based cross-sectioning method for silicon nanowires. High resolution SSRM measurements are demonstrated for epitaxially grown and etched silicon nanowires.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Verhulst, A.S. Vandenberghe, W.G. Maex, K. Gendt, S. De, Heyns, M.M. and Groeseneken, G. IEEE Electron Device Letters 29, 1398(2008).Google Scholar
2 Westwater, J. Gosain, D. P. Tomiya, S. Usui, S. and Ruda, H. J. Vac. Sci. Technol. B 15, 554(1997).Google Scholar
3 Cui, Y. and Lieber, C.M. Science 291, 851(2001).Google Scholar
4 Schmidt, V. Senz, S. and Gösele, U., Nano Lett. 5, 931(2005).Google Scholar
5 Wang, Y. Schmidt, V. Senz, S. and Gösele, U., Nature Nanotechnology 1, 186(2006).Google Scholar
6 Wolf, P. De, Snauwaert, J. Clarysse, T. Vandervorst, W. and Hellemans, L. Appl. Phys. Lett. 66, 1530(1995).Google Scholar
7 Eyben, P. Vandervorst, W., Alvarez, D. Xu, M. and Fouchier, M. in: Scanning Probe Microscopy, edited by Kalinin, S. and Gruverman, A. (Springer, 2007), p. 31.Google Scholar
8 Hantschel, T., Niedermann, P. Trenkler, T. and Vandervorst, W. Appl. Phys. Lett. 76, 1603(2000).Google Scholar
9 Hantschel, T. Demeulemeester, C. Eyben, P. Schulz, V. Richard, O. Bender, H. and Vandervorst, W. Phys. Status Solidi A, submitted for publication.Google Scholar
10 Agarwal, P. Vijayaraghavan, M.N. Neuilly, F. Hijzen, E. and Hurkx, G.A.M. Nano Lett. 7, 896(2007).Google Scholar