Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-05T01:21:13.307Z Has data issue: false hasContentIssue false

Carbon Nanotubes Synthesis from Four Different Organic Precursors by CVD

Published online by Cambridge University Press:  14 April 2016

F. G. Granados-Martínez
Affiliation:
Universidad Michoacana de San Nicolás de Hidalgo, Gral. Francisco J. Múgica S/N, Felicitas del Río, 58030 Morelia, Mich., México
J. J. Contreras-Navarrete
Affiliation:
Universidad Michoacana de San Nicolás de Hidalgo, Gral. Francisco J. Múgica S/N, Felicitas del Río, 58030 Morelia, Mich., México
D. L. García-Ruiz
Affiliation:
Universidad Michoacana de San Nicolás de Hidalgo, Gral. Francisco J. Múgica S/N, Felicitas del Río, 58030 Morelia, Mich., México
C. J. Gutiérrez-García
Affiliation:
Universidad Michoacana de San Nicolás de Hidalgo, Gral. Francisco J. Múgica S/N, Felicitas del Río, 58030 Morelia, Mich., México
A. Durán-Navarro
Affiliation:
Universidad Michoacana de San Nicolás de Hidalgo, Gral. Francisco J. Múgica S/N, Felicitas del Río, 58030 Morelia, Mich., México
E. E. Gama-Ortega
Affiliation:
Universidad Michoacana de San Nicolás de Hidalgo, Gral. Francisco J. Múgica S/N, Felicitas del Río, 58030 Morelia, Mich., México
N. Flores-Ramírez
Affiliation:
Universidad Michoacana de San Nicolás de Hidalgo, Gral. Francisco J. Múgica S/N, Felicitas del Río, 58030 Morelia, Mich., México
E. Huipe-Nava
Affiliation:
Universidad Michoacana de San Nicolás de Hidalgo, Gral. Francisco J. Múgica S/N, Felicitas del Río, 58030 Morelia, Mich., México
L. García-González
Affiliation:
Centro de Investigaciones en Micro y Nanotecnología de la Universidad Veracruzana, Boca del Río, Veracruz, México.
M. de L. Mondragón-Sánchez
Affiliation:
Instituto Tecnológico de Morelia, Avenida Tecnológico 1500. Lomas de Santiaguito 58120, Morelia, Mich., México
L. Domratcheva-Lvova*
Affiliation:
Universidad Michoacana de San Nicolás de Hidalgo, Gral. Francisco J. Múgica S/N, Felicitas del Río, 58030 Morelia, Mich., México
*
Get access

Abstract

Carbon nanotubes (CNTs) were synthesized by Chemical Vapor Deposition (CVD) from diethyl ether, butanol, hexane and ethyl acetate. A quartz tube with a stainless steel tube catalyst core with 0.019 m diameter and 0.6 m large formed the reactor. To avoid combustion, argon was used as the carrier gas. Time process ranged 30 to 60 min. The range of CNTs synthesis temperature was 680-850 °C for different precursors. Scanning Electron Microscopy micrographs have demonstrated tangled CNTs growth in all samples, thus presenting difficult length measurement. The CNTs diameters from diethyl ether are 45-200 nm, butanol diameter range from 55-230 nm, hexane diameter range is 50-130 nm and ethyl acetate range from 100 to 300 nm. Carbon content for all samples was higher than 93 %, CNTs from butanol showed carbon concentration up to 99%. FTIR, Raman and X-Ray Spectroscopies spectra for all samples demonstrated the characteristics signals present in carbon nanotubes. This research proposes a simple, effective and innovative method to synthesize CNTs by CVD on iron stainless steel catalyst in combination with diethyl ether, ethyl acetate, butanol and hexane as precursors by applying the principles of green chemistry, sustainability and its ease to be scaled.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anastas, P. and Eghbali, N., “Green chemistry: principles and practice,” Chemical Society Reviews, vol. 39, pp. 301312, 2010.10.1039/B918763BCrossRefGoogle Scholar
López-Urías, F., Terrones, M., and Terrones, H., “Beryllium doping graphene, graphene-nanoribbons, C 60-fullerene, and carbon nanotubes,” Carbon, vol. 84, pp. 317326, 2015.10.1016/j.carbon.2014.11.053CrossRefGoogle Scholar
Salinas-Estevané, P. and Cervantes, E. M. S., “La química verde en la síntesis de nanoestructuras,” Ingenierías, vol. 15, p. 7, 2012.Google Scholar
Eckelman, M. J., Zimmerman, J. B., and Anastas, P. T., “Toward green nano,” Journal of Industrial Ecology, vol. 12, pp. 316328, 2008.Google Scholar
Kumar, M. and Ando, Y., “Carbon nanotubes from camphor: an environment-friendly nanotechnology,” in Journal of Physics: Conference Series, 2007, p. 643.Google Scholar
Zhang, J., Gao, M., Hua, D., Li, Y., Xu, H., Liang, X., Zhao, Y., Jin, F., Chen, L., and Meng, G., “Butanol production of Clostridium pasteurianum SE-5 from transesterification reaction solution using fermentation and extraction coupling system,” in Materials for Renewable Energy and Environment (ICMREE), 2013 International Conference on, 2014, pp. 174178.Google Scholar
Ezeji, T. C., Qureshi, N., and Blaschek, H. P., “Bioproduction of butanol from biomass: from genes to bioreactors,” Current opinion in biotechnology, vol. 18, pp. 220227, 2007.10.1016/j.copbio.2007.04.002CrossRefGoogle Scholar
Rajchenberg-Ceceña, E., Rodríguez-Ruiz, J. A., Juárez, K., Martínez, A., and Morales, S., “Producción Microbiológica de Butanol,” BioTecnología, vol. 13, pp. 2637, 2009.Google Scholar
Gómez, A., González, P., García, L., Granados, F. G., Flores, N., López, V., and Domratcheva, L., “Carbon nanotubes obtained along variations in chemical vapor deposition process for improvement in mechanical properties of an epoxy composite,” Journal of Analytical and Applied Pyrolysis, 2015.Google Scholar
Mahanandia, P., Vishwakarma, P., Nanda, K., Prasad, V., Barai, K., Mondal, A., Sarangi, S., Dey, G., and Subramanyam, S., “Synthesis of multi-wall carbon nanotubes by simple pyrolysis,” Solid State Communications, vol. 145, pp. 143148, 2008.10.1016/j.ssc.2007.10.020CrossRefGoogle Scholar
Ordoñez-Casanova, E. G., Román-Aguirre, M., Aguilar-Elguezabal, A., and Espinosa-Magaña, F., “Synthesis of Carbon Nanotubes of Few Walls Using Aliphatic Alcohols as a Carbon Source,” Materials, vol. 6, pp. 25342542, 2013.10.3390/ma6062534CrossRefGoogle Scholar
Mendoza, D., Santiago, P., and Pérez, E. R., “Carbon nanotubes produced from hexane and ethanol,” Revista mexicana de física, vol. 52, p. 1, 2006.Google Scholar
Lyu, S. C., Liu, B. C., Lee, S. H., Park, C. Y., Kang, H. K., Yang, C.-W., and Lee, C. J., “Large-scale synthesis of high-quality double-walled carbon nanotubes by catalytic decomposition of n-hexane,” The Journal of Physical Chemistry B, vol. 108, pp. 21922194, 2004.10.1021/jp030955eCrossRefGoogle Scholar
Terrones, M., Botello-Méndez, A. R., Campos-Delgado, J., López-Urías, F., Vega-Cantú, Y. I., Rodríguez-Macías, F. J., Elías, A. L., Muñoz-Sandoval, E., Cano-Márquez, A. G., and Charlier, J.-C., “Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications,” Nano Today, vol. 5, pp. 351372, 2010.10.1016/j.nantod.2010.06.010CrossRefGoogle Scholar
Teng, L.-h., “IR study on surface chemical properties of catalytic grown carbon nanotubes and nanofibers,” Journal of Zhejiang University SCIENCE A, vol. 9, pp. 720726, 2008.10.1631/jzus.A071503CrossRefGoogle Scholar
Jung, Y. S. and Jeon, D. Y., “Surface structure and field emission property of carbon nanotubes grown by radio-frequency plasma-enhanced chemical vapor deposition,” Applied surface science, vol. 193, pp. 129137, 2002.10.1016/S0169-4332(02)00227-1CrossRefGoogle Scholar
Pavia, D., Lampman, G., Kriz, G., and Vyvyan, J., Introduction to spectroscopy: Cengage Learning, 2008.Google Scholar
Shiratori, Y., Hiraoka, H., and Yamamoto, M., “Vertically aligned carbon nanotubes produced by radio-frequency plasma-enhanced chemical vapor deposition at low temperature and their growth mechanism,” Materials chemistry and physics, vol. 87, pp. 3138, 2004.10.1016/j.matchemphys.2004.03.017CrossRefGoogle Scholar
Antunes, E., Lobo, A., Corat, E., and Trava-Airoldi, V., “Influence of diameter in the Raman spectra of aligned multi-walled carbon nanotubes,” Carbon, vol. 45, pp. 913921, 2007.10.1016/j.carbon.2007.01.003CrossRefGoogle Scholar
Costa, S., Borowiak-Palen, E., Kruszynska, M., Bachmatiuk, A., and Kalenczuk, R., “Characterization of carbon nanotubes by Raman spectroscopy,” Mater Sci-Poland, vol. 26, pp. 433441, 2008.Google Scholar
Bepete, G., Tetana, Z. N., Lindner, S., Rümmeli, M. H., Chiguvare, Z, and Coville, N. J., “The use of aliphatic alcohol chain length to control the nitrogen type and content in nitrogen doped carbon nanotubes,” Carbon, vol. 52, pp. 316325, 2013.10.1016/j.carbon.2012.09.033CrossRefGoogle Scholar
Sadeghian, Z., “Large-scale production of multi-walled carbon nanotubes by low-cost spray pyrolysis of hexane,” New Carbon Materials, vol. 24, pp. 3338, 2009.10.1016/S1872-5805(08)60034-7CrossRefGoogle Scholar
Luo, Y., Kong, D., Jia, Y., Luo, J., Lu, Y., Zhang, D., Qiu, K., Li, C. M., and Yu, T., “Self-assembled graphene@ PANI nanoworm composites with enhanced supercapacitor performance,” Rsc Advances, vol. 3, pp. 58515859, 2013.10.1039/c3ra00151bCrossRefGoogle Scholar
Allaedini, G., Aminayi, P., and Tasirin, S. M., “The Effect of Alumina and Magnesia Supported Germanium Nanoparticles on the Growth of Carbon Nanotubes in the Chemical Vapor Deposition Method,” Journal of Nanomaterials, vol. 501, p. 961231, 2015.Google Scholar
Cao, A., Xu, C., Liang, J., Wu, D., and Wei, B., “X-ray diffraction characterization on the alignment degree of carbon nanotubes,” Chemical physics letters, vol. 344, pp. 1317, 2001.10.1016/S0009-2614(01)00671-6CrossRefGoogle Scholar