Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T03:19:37.834Z Has data issue: false hasContentIssue false

Atomistic Theory of Bulk Metallic Glass Formation

Published online by Cambridge University Press:  11 February 2011

T. Egami*
Affiliation:
Department of Materials Science and Engineering and Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, PA 19104, USA and Lujan Center for Neutron Scattering, LANSCE, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Get access

Abstract

Bulk metallic glass can be formed only when the critical cooling rate for glass formation is reduced to 100–2 K/sec. However, a cooling rate achievable with molecular dynamics simulation is higher by many orders of magnitude, so the gap has to be abridged by analytical theories. We propose a theory of bulk metallic glass formation based upon our early theories of glass formation composition. The critical concepts include the idea of local glass transition, distributed local glass transition temperatures and coincident local fluctuation for atomic transport. Strong repulsion between small atoms was recognized for the first time as the necessary condition for bulk glass formation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Inoue, A., Zhang, T. and Masumoto, T., Mater. Trans. JIM, 31, 425 (1990).Google Scholar
2. Zhang, T., Inoue, A. and Masumoto, T., Mater. Trans. JIM, 32, 1005 (1991).Google Scholar
3. Peker, A. and Johnson, W. L., Appl. Phys. Lett., 63, 2342 (1993).Google Scholar
4. Egami, T. and Waseda, Y., J. Non-Cryst. Solids 64, 113 (1984).Google Scholar
5. Egami, T., Mater. Sci. Eng. A 226–228, 261 (1997).Google Scholar
6. Egami, T., Mater. Trans. 43, 510 (2003).Google Scholar
7. Egami, T., Z. Metallkunde 93, 1071 (2003).Google Scholar
8. Egami, T. and Srolovitz, D., J. Phys. F: Metal Phys. 12, 2414 (1982).Google Scholar
9. Cohen, M. H. and Turnbull, D., J. Chem. Phys. 31, 1164 (1959).Google Scholar
10. Turnbull, D. and Cohen, M. H., J. Chem. Phys. 34, 120 (1961).Google Scholar
11. Turnbull, D. and Cohen, M. H., J. Chem. Phys. 52, 3038 (1970).Google Scholar
12. Faupel, F., Frank, W., Macht, M.-P., Mehrer, H., Naundorf, V, Rätzke, K., Schober, H., Sharma, S. K. and Teichler, H., Rev. Mod. Phys. 75, 237 (2003).Google Scholar
13. Schober, H. R., Olingschleger, C. and Laird, B. B., J. Non-Cryst. Solids 156, 965 (1993).Google Scholar
14. Suzuki, Y., Haimovich, J. and Egami, T., Phys. Rev. B 35, 2162 (1987).Google Scholar
15. Hsieh, H.-Y., Egami, T., He, Y., Poon, S. J. and Shiflet, G. J., J. Non-Cryst. Solids 135, 248 (1991).Google Scholar