Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T03:03:23.362Z Has data issue: false hasContentIssue false

Analysis of Primary Crystallization in Amorphous Aluminum Alloys

Published online by Cambridge University Press:  11 February 2011

John H. Perepezko
Affiliation:
Forschungszentrum Karlsruhe, INT, P.O. 3640, D-76021, Karlsruhe, Germany
William S. Tong
Affiliation:
Forschungszentrum Karlsruhe, INT, P.O. 3640, D-76021, Karlsruhe, Germany
Joe Hamann
Affiliation:
Forschungszentrum Karlsruhe, INT, P.O. 3640, D-76021, Karlsruhe, Germany
Rainer J. Hebert
Affiliation:
Forschungszentrum Karlsruhe, INT, P.O. 3640, D-76021, Karlsruhe, Germany
Harald R. Rösner
Affiliation:
University of Wisconsin-Madison, Dept. Mat. Sci. and Eng., 1509 Univ. Ave. Madison WI 53706 USA
Gerhard Wilde
Affiliation:
University of Wisconsin-Madison, Dept. Mat. Sci. and Eng., 1509 Univ. Ave. Madison WI 53706 USA
Get access

Abstract

The annealing response of amorphous Al based alloy samples were investigated to assess the role of the as-quenched state on primary crystallization of Al nanocrystals(nc). Continuous heating differential scanning calorimetry (DSC) traces of amorphous Al87Ni10Ce3 powders were compared to those from melt spun ribbon (MSR) to examine the effect of sample subdivision on primary crystallization. While the powders exhibited the same onset temperature as MSR, thermal cycling experiments show fine powder sizes reacting at the onset temperature and coarse powder sizes with the lowest melt quench rate transforming at the highest primary reaction temperature. In Al92Sm8 MSR, a kinetics analysis of Al nc distributions indicates a notable effect of the as-quenched state on primary crystallization during isothermal annealing. With Al88Y7Fe5 MSR intense deformation can induce thedevelopment of an Al nc distribution without thermal annealing. In each case examined, the results support the inclusion of quenched in clusters in the analysis of primary crystallization reactions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Inoue, A., Ohtera, K., Tsai, A., Masunoto, T., Jpn. J. Appl. Phys., 27 L479 (1988)Google Scholar
2. Kolmogorov, A. N., Bull. Acad. Sci. USSR, Phys. Ser., 1, 355 (1937).Google Scholar
3. Johnson, W. A. and Mehl, R. F., Trans. AIME, 135, 416 (1939).Google Scholar
4. Avrami, M. J. Chem. Phys. 7, 1103 (1939).Google Scholar
5. Kelton, K. F. Mat. Sci. & Eng. A 226–228, 142 (1997).Google Scholar
6. Li, Q. et al., J. Mater. Res. 7, No. 10, 2756 (1992)Google Scholar
7. Fan, C., Imafuku, M., Kurokawa, H., Inoue, A., Scripta Mat. 44, 1993 (2001)Google Scholar
8. Mueller, B.A., Perepezko, J.H., Metall. Trans. 18A, 1143 (1987)Google Scholar
9. Wilde, G., Wu, R.I., Perepezko, J.H.. In: Science of Metastable and Nanocrystalline Alloys Structure, Properties and Modeling. Proc 22nd Risø Int Symp Mat Sci p.429 (2001).Google Scholar
10. Foley, J.C., Allen, D.R., Perepezko, J.H., Scripta Mat. 35, 655 (1996).Google Scholar
11. Wilde, G., Sieber, H. and Perepezko, J.H., Scripta Mat. 40, 779 (1999).Google Scholar
12. Kaschiev, D, Surf. Sci. 14, 109 (1969)Google Scholar
13. Greer, A.L., Met. Mat. Trans. 27A, 549 (1996).Google Scholar
14. Hebert, R.J., Perepezko, J.H., Mater. Sci. Engr. A (submitted).Google Scholar
15. Chen, H., He, Y., Shiflet, G.J., Poon, S.J., Nature 367, 541 (1994).Google Scholar
16. Sordelet, D.J., et al, J. Mater. Res. 17, 186 (2003).Google Scholar
17. Kim, J.-J., Choi, Y., Suresh, S., Argon, A.S., Science 295, 654 (2003).Google Scholar
18. Maddin, R., Masumoto, T., Mater. Sci. Engr. 9, 153 (1972).Google Scholar
19. Spaepen, F., Turnbull, D., Scripta Met. 8, 563 (1974).Google Scholar
20. Pampillo, C.A., J. Mat. Sci. 10, 1194 (1975).Google Scholar
21. Spaepen, F., Acta Met. 25, 407 (1977).Google Scholar
22. Argon, A.S., Acta Met. 27, 47 (1979).Google Scholar
23. Donovan, P.E., Stobbs, W.M., Acta Met. 29, 1419 (1981).Google Scholar
24. Hufnagel, T.C., El-Deiry, P., Vinci, R.P., Scripta Mat. 43, 1071 (2000).Google Scholar
25. Flores, K.M., et al. J. Mater. Res. 17, 1153 (2003).Google Scholar
26. Chen, H.S., Chuang, S.Y., Appl. Phys. Rev. 27, 316 (1975).Google Scholar
27. Gupta, A., Lal, S., Verma, R.P., J. Appl. Phys. 56, 3485 (1984).Google Scholar
28. Claus, J.-C., von Heimendahl, M., Z. Metallkde. 74, 744 (1983).Google Scholar
29. Hebert, R. J., Perepezko, J.H., these proceedings.Google Scholar
30. Perepezko, J. H., Hebert, R. J. and Wilde, G., Mater. Sci. Engr. A (in press).Google Scholar