Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T02:19:22.173Z Has data issue: false hasContentIssue false

Analysis of Carbon Nanotube Pull-out from a Polymer Matrix*

Published online by Cambridge University Press:  01 February 2011

S. J. V. Frankland
Affiliation:
ICASE, M/S 132C NASA Langley Research Center Hampton, VA 23681-2199
V. M. Harik
Affiliation:
ICASE, M/S 132C NASA Langley Research Center Hampton, VA 23681-2199
Get access

Abstract

Molecular dynamics (MD) simulations of carbon nanotube (NT) pull-out from a polymer matrix are carried out. As the NT pull-out develops in the simulation, variations in the displacement and velocities of the NT are monitored. The existence of a carbon-ring-based period in NT sliding during pull-out is identified. Linear trends in the NT velocity-force relation are observed and used to estimate an effective viscosity coefficient for interfacial sliding at the NT/polymer interface. As a result, the entire process of NT pull-out is characterized by an interfacial friction model that is based on a critical pull-out force, and an analog of Newton's friction law used to describe the NT/polymer interfacial sliding.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schadler, L. S., Giannaris, S. C. and Ajayan, P. M., Appl. Phys. Lett., 73, 3842 (1998); P. M. Ajayan, L. S. Schadler, S. C. Giannaris, and A. Rubio,. Adv. Mater., 12, 750 (2000).10.1063/1.122911Google Scholar
2. Shaffer, M. S. P. and Windle, A. H., Adv. Mater., 11, 937 (1999).10.1002/(SICI)1521-4095(199908)11:11<937::AID-ADMA937>3.0.CO;2-93.0.CO;2-9>Google Scholar
3. Piggott, M. R., Composites Sci. Techn., 55, 269 (1995).10.1016/0266-3538(95)00103-4Google Scholar
4. Bechel, V. T. and Sottos, N. R., Composites Sci. Techn., 58, 1727 (1998).10.1016/S0266-3538(98)00038-4Google Scholar
5. Yu, M.-F., Files, B. S., Arepalli, S. and Ruoff, R. S., Phys. Rev. Lett., 84, 5552 (2000).10.1103/PhysRevLett.84.5552Google Scholar
6. Frankland, S. J. V., Caglar, A., Brenner, D.W. and Griebel, M., J. Phys. Chem. B, 106, 3046 (2002).10.1021/jp015591+Google Scholar
7. Brenner, D. W., Phys. Rev. B, 42, 9458 (1990). A slightly modified form by Brenner, et. al. is used.10.1103/PhysRevB.42.9458Google Scholar
8. Harik, V. M. and Cairncross, R. A., Mech. Mater., 32, 807 (2000).10.1016/S0167-6636(00)00048-XGoogle Scholar
9. Persson, B. N. J., Sliding friction, Surf. Sci. Reports, 33, 83 (1999).10.1016/S0167-5729(98)00009-0Google Scholar
10. Batchelor, G. K., Introduction to Fluid Mechanics. Cambridge University Press, Cambridge, 1980.Google Scholar
11. Harik, V. M., Solid State Communications, 120, 331 (2001).10.1016/S0038-1098(01)00383-0Google Scholar
12. CRC Handbook of chemistry and physics (ed. Lide, D. R.), CRC Press Inc., Boca Raton, 1994.Google Scholar