Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T05:02:41.905Z Has data issue: false hasContentIssue false

Admittance Measurements at Epitaxial and Nonepitaxial Silicide Schottky Contacts

Published online by Cambridge University Press:  28 February 2011

J. Werner
Affiliation:
Max-Planck-Institut für Festkörperforschung, 7000 Stuttgart 80, FRG
R. T. Tung
Affiliation:
AT&T Bell Laboratories, Murray Hill, N.J. 07974
A. F. J. Levi
Affiliation:
AT&T Bell Laboratories, Murray Hill, N.J. 07974
M. Anzlowar
Affiliation:
AT&T Bell Laboratories, Murray Hill, N.J. 07974
Get access

Abstract

We report results of an extensive study examining the usefulness of low frequency capacitance measurements for the characterization of interface states at intimate Schottky contacts. Our measurements on epitaxial as well as on nonepitaxial silicides reveal that the imaginary component of the low frequency ac-admittance is usually inductive. This inductance is caused by minority carriers that are injected by the Schottky contact and modulate the conductivity of the series resistance of the bulk silicon. The frequently reported excess capacitances (instead of inductances) that were ascribed to interface states are only reproducible when we use imperfect back-contacts to the bulk Si that add a contact resistance to the equivalent dc-circuit of the Schottky diode. Excess low frequency capacitances at intimate Schottky contacts are therefore not related to interface states but rather to the contact resistance of the back-contact.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Schottky, W., Z. Phys. 118, 539 (1942).Google Scholar
[2] An extensive description of SCS was given by Barret, C., Chekir, F., and Vapaille, A., J. Phys. C.: Solid State Phys. 16, 2421 (1983)Google Scholar
2a. Barret, C., Chekir, F., Neffati, T., and Vapaille, A., Revue Phys. Appl. 18, 695 (1983).Google Scholar
[3] Ho, P. S., Yang, E. S., Evans, H. L., and Wu, X., Phys. Rev. Lett. 56, 177 (1986).Google Scholar
[4] Evans, H. L., Wu, X., Yang, E. S., and Ho, P. S., Appl. Phys. Lett. 46, 486 (1985).Google Scholar
[5] Evans, H. L., Wu, X., Yang, E. S., and Ho, P. S., J. Appl. Phys. 60, 3611 (1986).Google Scholar
[6] Freeouf, J. L., Appl. Phys. Lett. 41, 285 (1982).Google Scholar
[7[ Werner, J., Ploog, K., and Queisser, H. J., Phys. Rev. Lett. 57, 1080 (1986).Google Scholar
[8] Werner, J. and Ploog, K., Mat. Res. Soc. Symp. Proc. 54, 395 (1986).Google Scholar
[9] Tung, R. T., Phys. Rev. Lett. 52, 461 (1984).Google Scholar
[10] Liehr, M., Schmid, P. E., LeGoues, F. K., and Ho, P. S., Phys. Rev. Lett. 54, 2139 (1985).Google Scholar
[11] Tung, R. T. and Gibson, J. M., J. Vac. Sci. Technol. A 3, 987 (1985).Google Scholar
[12] Green, M. A. and Shewchun, J., Sol. St. Electr. 16, 1141 (1973).Google Scholar
[13] Werner, J., unpublished.Google Scholar