Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T02:44:47.299Z Has data issue: false hasContentIssue false

Vertically-Stacked InAs Islands Between GaAs Barriers Grown by Chemical Beam Epitaxy

Published online by Cambridge University Press:  10 February 2011

Mark Miller
Affiliation:
Department of Solid State Physics and the Swedish Nanometer Structures Consortium, Lund University, P.O. Box 118, S-221 00 Lund, Sweden
Søren Jeppesen
Affiliation:
Department of Solid State Physics and the Swedish Nanometer Structures Consortium, Lund University, P.O. Box 118, S-221 00 Lund, Sweden
Bernhard Kowalski
Affiliation:
Department of Solid State Physics and the Swedish Nanometer Structures Consortium, Lund University, P.O. Box 118, S-221 00 Lund, Sweden
Jan-Olle Malm
Affiliation:
National Center for HREM, Dept. of Inorganic Chemistry 2, Lund University, P.O. Box 124, S-221 00 Lund, Sweden
Mats-Erik Pistol
Affiliation:
Department of Solid State Physics and the Swedish Nanometer Structures Consortium, Lund University, P.O. Box 118, S-221 00 Lund, Sweden
Lars Samuelson
Affiliation:
Department of Solid State Physics and the Swedish Nanometer Structures Consortium, Lund University, P.O. Box 118, S-221 00 Lund, Sweden
Get access

Abstract

We report vertically-aligned InAs islands separated by GaAs barriers thin enough for electronic coupling. Thinner barriers reduced the InAs critical-thickness for island formation. Transmission electron microscopy revealed well-aligned islands with all detected islands in complete stacks. Atomic force microscopy showed the top islands of uncapped stacks are fully formed. The photoluminescence peak was sharper and shifted to lower energy compared to a single-layer growth. We attribute this shift to island-to-island electronic coupling and to the smaller compressive strain in the center of the composite structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Goldstein, L., Glas, F., Marzin, J. Y., Charasse, M. N., Roux, G. L., Appl. Phys. Lett. 47, 1099 (1985).Google Scholar
2. Guha, S., Madhukar, A., Rajkumar, K. C., Appl. Phys. Lett. 57, 2110 (1990).Google Scholar
3. Leonard, D., Krishnamurthy, M., Reaves, C. M., Denbaars, S. P., Petroff, P. M., Appl. Phys. Lett. 63, 3203 (1993).Google Scholar
4. Moison, J. M., Houzay, F., Barthe, F., Leprince, L., Appl. Phys. Lett. 64, 196 (1994).Google Scholar
5. Marzin, J.-Y., Gérad, J.-M., Izraël, A., Barrier, D., Bastard, G., Phys. Rev. Lett. 73, 716 (1994).Google Scholar
6. Soloman, G. S., Trezza, J. A., Harris, J. S., Appl. Phys. Lett. 66, 991 (1995).Google Scholar
7. Ruminov, S., et al., Phys. Rev. B 51, 14766 (1995).Google Scholar
8. Nötzel, R., Temmyo, J., Tamamura, T., Nature 369, 131 (1994).Google Scholar
9. Oshinowo, J., Nishioka, M., Ishida, S., Arakawa, Y., Appl. Phys. Lett. 65, 1421 (1994).Google Scholar
10. Grundmann, M., Stier, O., Bimberg, D., Phys. Rev. B 52, (1995).Google Scholar
11. Fafard, S., Leon, R., Leonard, D., Merz, J. L., Petroff, P. M., Phys. Rev. B 50, 8086 (1994).Google Scholar
12. Grundmann, M., et al., Phys. Rev. Lett. 74, 4043 (1995).Google Scholar
13. Jeppesen, S., Miller, M., Hessman, D., Kowalski, B., Maximov, I., Samuelson, L., Appl. Phys. Lett. submitted (1995).Google Scholar
14. Xie, Q., Maduhukar, A., Chen, P., Kobayashi, N. P., Phys. Rev. Lett. 75, 2542 (1995).Google Scholar
15. Lipsanen, H., Sopanen, M., Ahopelto, J., Phys. Rev. B 51, 13868 (1995).Google Scholar
16. Pistol, M.-E., Carlsson, N., Persson, C., Seifert, W., Samuelson, L., Appl. Phys. Lett. 67, 1438 (1995).Google Scholar
17. Xie, Q., Chen, P., Madhukar, A., Appl. Phys. Lett. 65, 2051 (1994).Google Scholar
18. ID Poisson may be obtained from G. Snider at [email protected].Google Scholar
19. Sakaki, H., Jpn. J. Appl. Phys. 28, L314 (1989).Google Scholar