Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-01T05:26:48.205Z Has data issue: false hasContentIssue false

Ultra-Low Energy Ion Implantation of Si into HfO2 and HfSiO-based Structures for Non Volatile Memory Applications

Published online by Cambridge University Press:  01 February 2011

Florence Gloux
Affiliation:
[email protected], CEMES-CNRS, Université de Toulouse, Toulouse, France
Pierre-Eugène Coulon
Affiliation:
[email protected], CEMES-CNRS, Université de Toulouse, Toulouse, France
Jesse Groenen
Affiliation:
[email protected], CEMES-CNRS, Université de Toulouse, Toulouse, France
Sylvie Schamm
Affiliation:
[email protected], CEMES-CNRS, Université de Toulouse, Toulouse, France
Gerard Benassayag
Affiliation:
[email protected], CEMES-CNRS, Université de Toulouse, Toulouse, France
Beatrice Pecassou
Affiliation:
[email protected], CEMES-CNRS, Université de Toulouse, Toulouse, France
Abdelilah Slaoui
Affiliation:
[email protected], InESS-CNRS, Strasbourg, France
Bhabani Sahu
Affiliation:
[email protected], InESS-CNRS, Strasbourg, France
Marzia Carrada
Affiliation:
[email protected], United States
Sandrine Lhostis
Affiliation:
[email protected], ST Microelectronics, Crolles, France
Caroline Bonafos
Affiliation:
[email protected], CEMES-CNRS, Université de Toulouse, Toulouse, France
Get access

Abstract

The fabrication of Si nanocrystals (NCs) in multilayer structures based on HfO2 and alloys for memory applications is carried out using an innovative method, the ultra-low energy (1 keV) ion implantation followed by a post-implantation annealing. Si+ ions are implanted into SiO2 thin layers deposited on top of thin HfO2-based layers. After annealing at high temperature (1050°C), the implantation leads to the formation of a two dimensional array of Si NCs at a distance from the surface larger than expected, due to an anomalous oxidation of the implanted Si. Nevertheless, the best memory windows are obtained at lower thermal budget, when no nanocrystals are present in the layer. This suggests that electrical measurements should always be correlated to structural characterization in order to understand where charge storage occurs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Tiwari, S. Rana, F. Hanafi, H. Hartstein, A. Crabbe, E. F. and Chan, K. Appl. Phys. Lett. 68, 1377 (1996).10.1063/1.116085Google Scholar
2 Bonafos, C. Coffin, H. Schamm, S. Cherkashin, N. Assayag, G. Ben, Dimitrakis, P. Normand, P., Carrada, M. Paillard, V. and Claverie, A. Solid-State Electronics 49, 1734 (2005).Google Scholar
3 Lu, J. Kuo, Y. Yan, J. and Lin, C.-H. Jap. J. Appl. Phys. 45, L901 (2006).10.1143/JJAP.45.L901Google Scholar
4 Fanciulli, M. Perego, M. Bonafos, C. Mouti, A. Schamm, S. and Benassayag, G., Adv. Sci. Technol. 51, 156 (2006).10.4028/www.scientific.net/AST.51.156Google Scholar
5 Bonafos, C. Carrada, M. Cherkashin, N. Coffin, H. Chassaing, D. Assayag, G. Ben, Claverie, A., Müller, T., Heinig, K. H. Perego, M. Fanciulli, M. Dimitrakis, P. and Normand, P. J. Appl. Phys. 95, 5696 (2004).10.1063/1.1695594Google Scholar
6 Coulon, P. E. Yu, K. Chan Shin, Schamm, S. Assayag, G. Ben, Pecassou, B. Slaoui, A. Bhabani, S., Carrada, M. Lhostis, S. and Bonafos, C. Materials Research Society Symposium Proceedings 1160, 3 (2009).10.1557/PROC-1160-H01-03Google Scholar
7 Schamm, S. Bonafos, C. Coffin, H. Cherkashin, N.1, Carrada, M. Assayag, G. Ben, Claverie, A., Tencé, M. and Colliex, C. Ultramicroscopy 108, 346 (2008).10.1016/j.ultramic.2007.05.008Google Scholar
8 Assayag, G. Ben, Bonafos, C. Carrada, M. Claverie, A. Normand, P. and Tsoukalas, D. Appl. Phys. Lett. 82, 200 (2003).10.1063/1.1536026Google Scholar
9 Claverie, A. Bonafos, C. Assayag, G. Ben, Schamm, S. Cherkashin, N. Paillard, V., Dimitrakis, P., Kapetenakis, E. Tsoukalas, D. Muller, T. Schmidt, B. Heinig, K. H. Perego, M. Fanciulli, M. Mathiot, D. Carrada, M. and Normand, P. Diffusion in Solids and Liquids 258-260, 531 (2006).Google Scholar
10 Biersack, J. P. and Haggmark, L. G. Nucl. Instrum. Methods 174, 257 (1980)10.1016/0029-554X(80)90440-1Google Scholar
11 Carrada, M. Cherkashin, N. Bonafos, C. Benassayag, G. Chassaing, D. Normand, P. Tsoukalas, D., Soncini, V. and Claverie, A. Mat. Sci. And Eng. B101, 204 (2003).10.1016/S0921-5107(02)00724-9Google Scholar
12 Schmidt, B. Grambole, D. and Herrmann, F. Nucl. Instr. and Meth. in Phys. Res. B191, 482 (2002).10.1016/S0168-583X(02)00597-9Google Scholar
13 Wiemer, C. Lamagna, L. Baldovino, S. Perego, M. Schamm-Chardon, S., Coulon, P. E. Salicio, O., Congedo, G. Spiga, S. and Fanciulli, M. Appl. Phys. Lett. 96, 182901 (2010).10.1063/1.3400213Google Scholar
14 Normand, P. Kapetanakis, E. Dimitrakis, P., Tsoukalas, D. Beltsios, K. Cherkashin, N. Bonafos, C., Coffin, H. Benassayag, G. and Claverie, A. Appl. Phys. Lett. 83, 168 (2003).10.1063/1.1588378Google Scholar